Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2021, Volume 31, Issue 3, Pages 144–157
DOI: https://doi.org/10.14357/08696527210313
(Mi ssi789)
 

Expert evaluation of machine translation: Error classification

A. Yu. Egorova, I. M. Zatsman, V. A. Nuriev

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
References:
Abstract: The paper considers the error classification applied in the expert evaluation of the machine translation quality. The classification includes common error headings (for errors at the level of grammar, vocabulary, punctuation, etc.) as well as headings that are associated with a specific type of linguistic unit selected for evaluating the machine translation quality. The quality evaluation is performed by experts as they linguistically annotate machine translation outcomes. If, while annotating, an expert finds errors, then headings, necessary to characterize these errors, are included in the annotation. The headings allow one to calculate the relative frequency of machine translation errors for the array of test sentences selected for translation and quality evaluation. The main goal of the paper is to describe the proposed classification of common and *specific errors. The principal difference of the classification from the existing error classifications is that it is aimed at backing interval evaluation for machine translation systems, whose quality of work may vary over time. The headings of the proposed classification allow experts to record both improvements and decreases in machine translation quality at a given time interval.
Keywords: machine translation, quality evaluation, error classification, common errors, specific errors, linguistic annotation, interval evaluation.
Received: 12.08.2021
Document Type: Article
Language: Russian
Citation: A. Yu. Egorova, I. M. Zatsman, V. A. Nuriev, “Expert evaluation of machine translation: Error classification”, Sistemy i Sredstva Inform., 31:3 (2021), 144–157
Citation in format AMSBIB
\Bibitem{EgoZatNur21}
\by A.~Yu.~Egorova, I.~M.~Zatsman, V.~A.~Nuriev
\paper Expert evaluation of~machine translation: Error classification
\jour Sistemy i Sredstva Inform.
\yr 2021
\vol 31
\issue 3
\pages 144--157
\mathnet{http://mi.mathnet.ru/ssi789}
\crossref{https://doi.org/10.14357/08696527210313}
Linking options:
  • https://www.mathnet.ru/eng/ssi789
  • https://www.mathnet.ru/eng/ssi/v31/i3/p144
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024