Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2021, Volume 31, Issue 2, Pages 139–151
DOI: https://doi.org/10.14357/08696527210213
(Mi ssi772)
 

This article is cited in 2 scientific papers (total in 2 papers)

Indicator-based evaluation of machine translation instability

A. Yu. Egorova, I. M. Zatsman, M. G. Kruzhkov, V. A. Nuriev

Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119133, Russian Federation
Full-text PDF (410 kB) Citations (2)
References:
Abstract: The paper presents data collected by tracking performance of a neural machine translation (NMT) engine and results of translation errors analysis. Indicator-based evaluation of NMT instability was carried out as a part of an experiment that involved 250 Russian text fragments. Each month for the duration of one year, these fragments were translated into French using the Google Translate NMT engine. The translations were recorded and annotated in a supracorpora database; the annotations include types of translation errors found in the translations by language experts. This procedure resulted in a series of 12 annotated translations for each of the 250 Russian fragments. The annotations include not only the types of errors found in the translations but also the types of NMT instability which indicate dynamics of translation quality or lack thereof. The paper aims to provide comparative analysis of Google Translate performance that takes into account the temporal variation aspect.
Keywords: neural machine translation (NMT), instability of machine translation, supracorpora database, indicator-based evaluation, linguistic annotation, NMT instability types.
Received: 09.03.2021
Document Type: Article
Language: Russian
Citation: A. Yu. Egorova, I. M. Zatsman, M. G. Kruzhkov, V. A. Nuriev, “Indicator-based evaluation of machine translation instability”, Sistemy i Sredstva Inform., 31:2 (2021), 139–151
Citation in format AMSBIB
\Bibitem{EgoZatKru21}
\by A.~Yu.~Egorova, I.~M.~Zatsman, M.~G.~Kruzhkov, V.~A.~Nuriev
\paper Indicator-based evaluation of~machine translation instability
\jour Sistemy i Sredstva Inform.
\yr 2021
\vol 31
\issue 2
\pages 139--151
\mathnet{http://mi.mathnet.ru/ssi772}
\crossref{https://doi.org/10.14357/08696527210213}
Linking options:
  • https://www.mathnet.ru/eng/ssi772
  • https://www.mathnet.ru/eng/ssi/v31/i2/p139
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :43
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024