Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2017, Volume 27, Issue 3, Pages 37–51
DOI: https://doi.org/10.14357/08696527170304
(Mi ssi527)
 

This article is cited in 1 scientific paper (total in 1 paper)

Truncation bounds for a class of inhomogeneous birth and death queueing models with additional transitions

A. I. Zeifmanabc, A. V. Korotyshevaa, Ya. A. Satina, K. M. Kiselevada, R. V. Razumchikdc, V. Yu. Korolevec, S. Ya. Shorginc

a Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation
b ISEDT RAS, 56-A Gorky Str., Vologda 160001, Russian Federation
c Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow, 119333, Russian Federation
d Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
e Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Full-text PDF (317 kB) Citations (1)
References:
Abstract: The paper considers the computation of limiting characteristics for a class of inhomogeneous birth-death processes with possible transitions from and to origin. The authors study the general situation of the slower (nonexponential) decreasing of intensities of transitions from state $0$ to state $k$ as $k \to \infty$. The authors consider the situation of weak ergodicity and obtain bounds on the rate of convergence in weighted norm and, moreover, uniform in time bounds on the rate of approximations by truncated processes. The inhomogeneous $M/M/S$ queueing model with additional transitions is studied as an example.
Keywords: inhomogeneous process; birth-death process; approximations; truncations; ergodicity; bounds; queueing systems.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01698_а
Ministry of Education and Science of the Russian Federation 02.a03.21.0008
The research was supported by the Ministry of Education and Science of the Russian Federation (agreement 02.a03.21.0008 dated 24.06.2016) and the Russian Foundation for Basic Research (project 15-01-01698).
Received: 30.06.2017
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Zeifman, A. V. Korotysheva, Ya. A. Satin, K. M. Kiseleva, R. V. Razumchik, V. Yu. Korolev, S. Ya. Shorgin, “Truncation bounds for a class of inhomogeneous birth and death queueing models with additional transitions”, Sistemy i Sredstva Inform., 27:3 (2017), 37–51
Citation in format AMSBIB
\Bibitem{ZeiKorSat17}
\by A.~I.~Zeifman, A.~V.~Korotysheva, Ya.~A.~Satin, K.~M.~Kiseleva, R.~V.~Razumchik, V.~Yu.~Korolev, S.~Ya.~Shorgin
\paper Truncation bounds for a class of inhomogeneous birth and death queueing models with additional transitions
\jour Sistemy i Sredstva Inform.
\yr 2017
\vol 27
\issue 3
\pages 37--51
\mathnet{http://mi.mathnet.ru/ssi527}
\crossref{https://doi.org/10.14357/08696527170304}
\elib{https://elibrary.ru/item.asp?id=30455542}
Linking options:
  • https://www.mathnet.ru/eng/ssi527
  • https://www.mathnet.ru/eng/ssi/v27/i3/p37
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :135
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024