Sovremennye Problemy Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sovrem. Probl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sovremennye Problemy Matematiki, 2003, Issue 1, Pages 29–82
DOI: https://doi.org/10.4213/spm3
(Mi spm3)
 

This article is cited in 8 scientific papers (total in 9 papers)

Differential Equations with Meromorphic Coefficients

A. A. Bolibrukh
Full-text PDF (470 kB) Citations (9)
References:
Abstract: The following problems of the analytic theory of differential equations are considered: Hilbert's 21st problem for Fuchsian systems of linear differential equations, the Birkhoff normal form problem for systems of linear differential equations with irregular singularities, and the classification problem for isomonodromic deformations of Fuchsian systems.
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 272, Issue 2, Pages S13–S43
DOI: https://doi.org/10.1134/S0081543811030035
Bibliographic databases:
Language: Russian
Citation: A. A. Bolibrukh, “Differential Equations with Meromorphic Coefficients”, Sovrem. Probl. Mat., 1, Steklov Math. Institute of RAS, Moscow, 2003, 29–82; Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S13–S43
Citation in format AMSBIB
\Bibitem{Bol03}
\by A.~A.~Bolibrukh
\paper Differential Equations with Meromorphic Coefficients
\serial Sovrem. Probl. Mat.
\yr 2003
\vol 1
\pages 29--82
\publ Steklov Math. Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/spm3}
\crossref{https://doi.org/10.4213/spm3}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141822}
\zmath{https://zbmath.org/?q=an:06287505}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 272
\issue , suppl. 2
\pages S13--S43
\crossref{https://doi.org/10.1134/S0081543811030035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289527600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79954568590}
Linking options:
  • https://www.mathnet.ru/eng/spm3
  • https://doi.org/10.4213/spm3
  • https://www.mathnet.ru/eng/spm/v1/p29
  • This publication is cited in the following 9 articles:
    1. A. A. Golubkov, “Kvazibezmonodromnye sistemy differentsialnykh uravnenii pervogo poryadka s parametrom”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 59–68  mathnet  crossref
    2. V. V. Amel'kin, M. N. Vasilevich, “Construction of the Fuchs equation with four given finite critical points and a given reducible monodromy group in the resonance case”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 55:2 (2019), 199  crossref
    3. Yulia Bibilo, Galina Filipuk, “Constructive Solutions to the Riemann–Hilbert Problem and Middle Convolution”, J Dyn Control Syst, 23:1 (2017), 55  crossref
    4. Yulia Bibilo, Galina Filipuk, “Middle convolution and non-Schlesinger deformations”, Proc. Japan Acad. Ser. A Math. Sci., 91:5 (2015)  crossref
    5. Amel'kin V.V., Vasilevich M.N., “Construction of a Fuchs Equation with Four Singular Points and with Given Reducible 2 X 2 Monodromy Matrices on the Complex Projective Line”, Differ. Equ., 49:6 (2013), 655–661  crossref  mathscinet  zmath  isi  scopus
    6. Yu. P. Bibilo, “Isomonodromic deformations of systems of linear differential equations with irregular singularities”, Sb. Math., 203:6 (2012), 826–843  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. I. V. Vyugin, R. R. Gontsov, “Additional parameters in inverse problems of monodromy”, Sb. Math., 197:12 (2006), 1753–1773  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh in life and science (30 January 1950 – 11 November 2003)”, Russian Math. Surveys, 59:6 (2004), 1009–1028  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. Yu. S. Ilyashenko, “Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)”, Russian Math. Surveys, 59:6 (2004), 1079–1091  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современные проблемы математики
    Statistics & downloads:
    Abstract page:878
    Full-text PDF :568
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025