Abstract:
The following problems of the analytic theory of differential equations are considered: Hilbert's 21st problem for Fuchsian systems of linear differential equations, the Birkhoff normal form problem for systems of linear differential equations with irregular singularities, and the classification problem for isomonodromic deformations of Fuchsian systems.
Citation:
A. A. Bolibrukh, “Differential Equations with Meromorphic Coefficients”, Sovrem. Probl. Mat., 1, Steklov Math. Institute of RAS, Moscow, 2003, 29–82; Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S13–S43
This publication is cited in the following 9 articles:
A. A. Golubkov, “Kvazibezmonodromnye sistemy differentsialnykh uravnenii pervogo poryadka s parametrom”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 59–68
V. V. Amel'kin, M. N. Vasilevich, “Construction of the Fuchs equation with four given finite critical points and a given reducible monodromy group in the resonance case”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 55:2 (2019), 199
Yulia Bibilo, Galina Filipuk, “Constructive Solutions to the Riemann–Hilbert Problem and Middle Convolution”, J Dyn Control Syst, 23:1 (2017), 55
Yulia Bibilo, Galina Filipuk, “Middle convolution and non-Schlesinger deformations”, Proc. Japan Acad. Ser. A Math. Sci., 91:5 (2015)
Amel'kin V.V., Vasilevich M.N., “Construction of a Fuchs Equation with Four Singular Points and with Given Reducible 2 X 2 Monodromy Matrices on the Complex Projective Line”, Differ. Equ., 49:6 (2013), 655–661
Yu. P. Bibilo, “Isomonodromic deformations of systems of linear differential equations with irregular singularities”, Sb. Math., 203:6 (2012), 826–843
I. V. Vyugin, R. R. Gontsov, “Additional parameters in inverse problems of monodromy”, Sb. Math., 197:12 (2006), 1753–1773
D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh in life and science (30 January 1950 – 11 November 2003)”, Russian Math. Surveys, 59:6 (2004), 1009–1028
Yu. S. Ilyashenko, “Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)”, Russian Math. Surveys, 59:6 (2004), 1079–1091