|
Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 3, Pages 673–678
(Mi smj996)
|
|
|
|
An estimate for the $n$-th minimal error of linear algorithms for one problem in a normed vector space
S. P. Sidorov Saratov State University named after N. G. Chernyshevsky
Abstract:
We find an estimate for the $n$-th minimal error of linear algorithms for some problem defined in a finite-dimensional space with values in an arbitrary normed vector space.
Keywords:
minimal error of linear algorithms, Kolmogorov $n$-width, least norm polynomial.
Received: 11.06.2004
Citation:
S. P. Sidorov, “An estimate for the $n$-th minimal error of linear algorithms for one problem in a normed vector space”, Sibirsk. Mat. Zh., 46:3 (2005), 673–678; Siberian Math. J., 46:3 (2005), 535–539
Linking options:
https://www.mathnet.ru/eng/smj996 https://www.mathnet.ru/eng/smj/v46/i3/p673
|
Statistics & downloads: |
Abstract page: | 249 | Full-text PDF : | 83 | References: | 38 |
|