Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 3, Pages 620–624 (Mi smj991)  

This article is cited in 7 scientific papers (total in 8 papers)

On Grothendieck subspaces

S. S. Kutateladze

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (165 kB) Citations (8)
References:
Abstract: The modulus of an order bounded functional on a Riesz space is the sum of a pair of Riesz homomorphisms if and only if the kernel of this functional is a Grothendieck subspace of the ambient Riesz space. An operator version of this fact is given.
Keywords: Riesz homomorphism, 2-disjoint operator, Grothendieck subspace, Boolean valued analysis.
Received: 21.02.2005
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 3, Pages 489–493
DOI: https://doi.org/10.1007/s11202-005-0050-x
Bibliographic databases:
UDC: 517.11
Language: Russian
Citation: S. S. Kutateladze, “On Grothendieck subspaces”, Sibirsk. Mat. Zh., 46:3 (2005), 620–624; Siberian Math. J., 46:3 (2005), 489–493
Citation in format AMSBIB
\Bibitem{Kut05}
\by S.~S.~Kutateladze
\paper On Grothendieck subspaces
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 3
\pages 620--624
\mathnet{http://mi.mathnet.ru/smj991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164564}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 3
\pages 489--493
\crossref{https://doi.org/10.1007/s11202-005-0050-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229958200011}
Linking options:
  • https://www.mathnet.ru/eng/smj991
  • https://www.mathnet.ru/eng/smj/v46/i3/p620
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024