Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 3, Pages 594–619 (Mi smj990)  

This article is cited in 4 scientific papers (total in 4 papers)

Entropy solutions to a second order forward-backward parabolic differential equation

I. V. Kuznetsov

M. A. Lavrent'ev Institute of Hydrodynamics
Full-text PDF (318 kB) Citations (4)
References:
Abstract: We prove that the first boundary value problem for a second order forward-backward parabolic differential equation in a bounded domain $G_T\subset\mathbb{R}^{d+1}$, where $d\geqslant2$, has a unique entropy solution in the sense of F. Otto. Under some natural restrictions on the boundary values this solution is constructed as the limit with respect to a small parameter of a sequence of solutions to Dirichlet problems for an elliptic differential equation. We also show that the entropy solution is stable in the metric of $L_1(G_T)$ with respect to perturbations of the boundary values in the metric of $L_1(\partial G_T)$.
Keywords: entropy solution, forward-backward parabolic differential equation.
Received: 26.05.2004
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 3, Pages 467–488
DOI: https://doi.org/10.1007/s11202-005-0049-3
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: I. V. Kuznetsov, “Entropy solutions to a second order forward-backward parabolic differential equation”, Sibirsk. Mat. Zh., 46:3 (2005), 594–619; Siberian Math. J., 46:3 (2005), 467–488
Citation in format AMSBIB
\Bibitem{Kuz05}
\by I.~V.~Kuznetsov
\paper Entropy solutions to a second order forward-backward parabolic differential equation
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 3
\pages 594--619
\mathnet{http://mi.mathnet.ru/smj990}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164563}
\zmath{https://zbmath.org/?q=an:1113.35083}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 3
\pages 467--488
\crossref{https://doi.org/10.1007/s11202-005-0049-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229958200010}
Linking options:
  • https://www.mathnet.ru/eng/smj990
  • https://www.mathnet.ru/eng/smj/v46/i3/p594
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :139
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024