Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 2, Pages 403–415 (Mi smj975)  

This article is cited in 20 scientific papers (total in 20 papers)

On a characterization theorem on finite Abelian groups

M. V. Mironyuk, G. M. Feldman

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
References:
Abstract: By the classical Skitovich–Darmois Theorem the independence of two linear forms of independent random variables characterizes a Gaussian distribution. A result close to the Skitovich–Darmois Theorem was proved by Heyde, with the condition of the independence of linear forms replaced by the symmetry of the conditional distribution of one linear form given the other. The present article is devoted to an analog of Heyde's Theorem in the case when random variables take values in a finite Abelian group and the coefficients of the linear forms are group automorphisms.
Keywords: characterization of probability distributions, idempotent distributions, finite Abelian groups.
Received: 16.09.2003
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 2, Pages 315–324
DOI: https://doi.org/10.1007/s11202-005-0033-y
Bibliographic databases:
UDC: 517, 519.2
Language: Russian
Citation: M. V. Mironyuk, G. M. Feldman, “On a characterization theorem on finite Abelian groups”, Sibirsk. Mat. Zh., 46:2 (2005), 403–415; Siberian Math. J., 46:2 (2005), 315–324
Citation in format AMSBIB
\Bibitem{MirFel05}
\by M.~V.~Mironyuk, G.~M.~Feldman
\paper On a characterization theorem on finite Abelian groups
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 2
\pages 403--415
\mathnet{http://mi.mathnet.ru/smj975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141206}
\zmath{https://zbmath.org/?q=an:1100.60003}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 2
\pages 315--324
\crossref{https://doi.org/10.1007/s11202-005-0033-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228419900014}
Linking options:
  • https://www.mathnet.ru/eng/smj975
  • https://www.mathnet.ru/eng/smj/v46/i2/p403
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :92
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024