|
Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 1, Pages 90–97
(Mi smj960)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
The Cayley–Menger determinant is irreducible for $n\geqslant3$
C. D'Andreaa, M. Sombrab a University of California, Berkeley
b Universitat de Barcelona
Abstract:
We prove that the Cayley–Menger determinant of an $n$-dimensional simplex is an absolutely irreducible polynomial for $n\geqslant3$. We also study the irreducibility of the polynomials associated to the related geometric constructions.
Keywords:
volume of a simplex, Cayley–Menger determinant, irreducible polynomial.
Received: 18.06.2004
Citation:
C. D'Andrea, M. Sombra, “The Cayley–Menger determinant is irreducible for $n\geqslant3$”, Sibirsk. Mat. Zh., 46:1 (2005), 90–97; Siberian Math. J., 46:1 (2005), 71–76
Linking options:
https://www.mathnet.ru/eng/smj960 https://www.mathnet.ru/eng/smj/v46/i1/p90
|
Statistics & downloads: |
Abstract page: | 643 | Full-text PDF : | 252 | References: | 60 |
|