Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 1, Pages 79–89 (Mi smj959)  

This article is cited in 2 scientific papers (total in 2 papers)

To the question about the maximum principle for manifolds over local algebras

T. I. Gaisin

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
Full-text PDF (222 kB) Citations (2)
References:
Abstract: We consider manifolds over a local algebra $A$. We study basis functions of the canonical foliation which represent the real parts of $A$-differentiable functions. We prove that these are constant functions. We find the form of $A$-differentiable functions on some manifolds over local algebras, in particular, on compact manifolds. We obtain an estimate for the dimension of some spaces of 1-forms and analogs of the above results for the projective mappings of foliations.
Keywords: manifolds over algebras, foliation, projective mapping, basis form.
Received: 27.04.2004
Revised: 24.08.2004
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 1, Pages 62–70
DOI: https://doi.org/10.1007/s11202-005-0006-1
Bibliographic databases:
UDC: 514
Language: Russian
Citation: T. I. Gaisin, “To the question about the maximum principle for manifolds over local algebras”, Sibirsk. Mat. Zh., 46:1 (2005), 79–89; Siberian Math. J., 46:1 (2005), 62–70
Citation in format AMSBIB
\Bibitem{Gai05}
\by T.~I.~Gaisin
\paper To the question about the maximum principle for manifolds over local algebras
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 1
\pages 79--89
\mathnet{http://mi.mathnet.ru/smj959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141303}
\zmath{https://zbmath.org/?q=an:1102.58006}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 1
\pages 62--70
\crossref{https://doi.org/10.1007/s11202-005-0006-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227076100006}
Linking options:
  • https://www.mathnet.ru/eng/smj959
  • https://www.mathnet.ru/eng/smj/v46/i1/p79
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :72
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024