Abstract:
Let ξ1,ξ2,… be independent random variables with distributions F1,F2,… in a triangular scheme (Fi may depend on some parameter),
Eξi=0,Sn=n∑i=1ξi,¯Sn=maxk⩽nSk.
Assuming that some regularly varying functions majorize and minorize F=1n∑ni=1Fi, we find upper and lower bounds for the probabilities P(Sn>x) and P(¯Sn>z). These bounds are precise enough to yield asymptotics. We also study the asymptotics of the probability that a trajectory {Sk} crosses the remote boundary {g(k)} i.e., the asymptotics of P(maxk⩽n(Sk−g(k))>0). The case n=∞ is not exclude. We also estimate excluded. Ewlso estimate the disribution of the crossing time.
Keywords:
random walks, large deviations, nonidentically distributed jumps, triangular scheme, infinite.
Citation:
A. A. Borovkov, “Large deviations for random walks with nonidentically distributed jumps having infinite variance”, Sibirsk. Mat. Zh., 46:1 (2005), 46–70; Siberian Math. J., 46:1 (2005), 35–55
\Bibitem{Bor05}
\by A.~A.~Borovkov
\paper Large deviations for random walks with nonidentically distributed jumps having infinite variance
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 1
\pages 46--70
\mathnet{http://mi.mathnet.ru/smj957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141301}
\zmath{https://zbmath.org/?q=an:1125.60305}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 1
\pages 35--55
\crossref{https://doi.org/10.1007/s11202-005-0004-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227076100004}
Linking options:
https://www.mathnet.ru/eng/smj957
https://www.mathnet.ru/eng/smj/v46/i1/p46
This publication is cited in the following 2 articles:
A. A. Borovkov, “Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance”, Siberian Math. J., 46:6 (2005), 1020–1038
A. A. Borovkov, “Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances”, Theory Probab. Appl., 50:2 (2006), 199–213