Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 1, Pages 46–70 (Mi smj957)  

This article is cited in 2 scientific papers (total in 2 papers)

Large deviations for random walks with nonidentically distributed jumps having infinite variance

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (321 kB) Citations (2)
References:
Abstract: Let $\xi_1,\xi_2,\dots$ be independent random variables with distributions $F_1,F_2,\dots$ in a triangular scheme ($F_i$ may depend on some parameter),
$$ \mathbf{E}\xi_i=0, \quad S_n=\sum_{i=1}^n\xi_i, \quad \overline{S}_n=\max_{k\leqslant n}S_k. $$
Assuming that some regularly varying functions majorize and minorize $F=\frac1n\sum_{i=1}^nF_i$, we find upper and lower bounds for the probabilities $\mathbf{P}(S_n>x)$ and $\mathbf{P}(\overline{S}_n>z)$. These bounds are precise enough to yield asymptotics. We also study the asymptotics of the probability that a trajectory $\{S_k\}$ crosses the remote boundary $\{g(k)\}$ i.e., the asymptotics of $\mathbf{P}\bigl(\max_{k\leqslant n}(S_k-g(k))>0\bigr)$. The case $n=\infty$ is not exclude. We also estimate excluded. Ewlso estimate the disribution of the crossing time.
Keywords: random walks, large deviations, nonidentically distributed jumps, triangular scheme, infinite.
Received: 21.09.2004
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 1, Pages 35–55
DOI: https://doi.org/10.1007/s11202-005-0004-3
Bibliographic databases:
UDC: 519.214.8
Language: Russian
Citation: A. A. Borovkov, “Large deviations for random walks with nonidentically distributed jumps having infinite variance”, Sibirsk. Mat. Zh., 46:1 (2005), 46–70; Siberian Math. J., 46:1 (2005), 35–55
Citation in format AMSBIB
\Bibitem{Bor05}
\by A.~A.~Borovkov
\paper Large deviations for random walks with nonidentically distributed jumps having infinite variance
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 1
\pages 46--70
\mathnet{http://mi.mathnet.ru/smj957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141301}
\zmath{https://zbmath.org/?q=an:1125.60305}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 1
\pages 35--55
\crossref{https://doi.org/10.1007/s11202-005-0004-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227076100004}
Linking options:
  • https://www.mathnet.ru/eng/smj957
  • https://www.mathnet.ru/eng/smj/v46/i1/p46
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :122
    References:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024