Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 1, Pages 3–16 (Mi smj955)  

This article is cited in 9 scientific papers (total in 9 papers)

The boundary-value problem for the transport equation with purely compton scattering

D. S. Anikonov, D. S. Konovalova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (238 kB) Citations (9)
References:
Abstract: We study the boundary-value problem of finding the distribution density or the intensity of photon flows in an arbitrary medium. The main ingredient of the mathematical model is the stationary transport equation. The radiation characteristics of the medium and sources of radiation are assumed known; i.e., the problem under consideration is a classical direct problem of mathematical physics. The article is a continuation of the previous article by the authors. We have managed to extend essentially the classes of functions describing the process of photon migration so as to cover the resonance phenomena and cases of compound media. The result of the article is a unique existence theorem concerning the boundary-value problem for the transport equation.
Keywords: Compton scattering, transport theory, photon migration, $X$-ray radiation.
Received: 10.10.2003
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 1, Pages 1–12
DOI: https://doi.org/10.1007/s11202-005-0001-6
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: D. S. Anikonov, D. S. Konovalova, “The boundary-value problem for the transport equation with purely compton scattering”, Sibirsk. Mat. Zh., 46:1 (2005), 3–16; Siberian Math. J., 46:1 (2005), 1–12
Citation in format AMSBIB
\Bibitem{AniKon05}
\by D.~S.~Anikonov, D.~S.~Konovalova
\paper The boundary-value problem for the transport equation with purely compton scattering
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/smj955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141298}
\zmath{https://zbmath.org/?q=an:1094.35034}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1007/s11202-005-0001-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227076100001}
Linking options:
  • https://www.mathnet.ru/eng/smj955
  • https://www.mathnet.ru/eng/smj/v46/i1/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :136
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024