|
Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 1, Pages 130–138
(Mi smj945)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
The space of Fourier–Haar multipliers
O. V. Lelonda, E. M. Semenovb, S. N. Uksusovb a Togliatti State University
b Voronezh State University
Abstract:
The Haar system constitutes an unconditional basis for a separable rearrangement invariant (symmetric) space $E$ if and only if the multiplier determined by the sequence $\lambda_{nk}=(-1)^n$, $k=0,1$, for $n=0$ and $k=0,1,\dots,2^n$ for $n\geqslant1$, is bounded in $E$. If the Lorentz space $\Lambda(\varphi)$ differs from $L_1$ and $L_\infty$ then there is a multiplier with respect to the Haar system which is bounded in $\Lambda(\varphi)$ and unbounded in $L_\infty$ and $L_1$.
Keywords:
Haar system, rearrangement invariant space, Lorentz space, multiplier, unconditional basis.
Received: 26.04.2004
Citation:
O. V. Lelond, E. M. Semenov, S. N. Uksusov, “The space of Fourier–Haar multipliers”, Sibirsk. Mat. Zh., 46:1 (2005), 130–138; Siberian Math. J., 46:1 (2005), 103–110
Linking options:
https://www.mathnet.ru/eng/smj945 https://www.mathnet.ru/eng/smj/v46/i1/p130
|
|