Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 6, Pages 1414–1428 (Mi smj942)  

This article is cited in 1 scientific paper (total in 1 paper)

On the smallest eigenvalue of the Stokes operator in a domain with fine-grained random boundary

V. V. Yurinskii

University of Beira Interior
Full-text PDF (284 kB) Citations (1)
References:
Abstract: This article deals with a problem arising in localization of the principal eigenvalue (PE) of the Stokes operator under the Dirichlet condition on the fine-grained random boundary of a domain contained in a cube of size $t\gg1$. The random microstructure is assumed identically distributed in distinct unit cubic cells and, in essence, independent. In this setting, the asymptotic behavior of the PE as $t\to\infty$ is deterministic: it proves possible to find nonrandom upper and lower bounds on the PE which apply with probability that converges to 1. It was proved earlier that in two dimensions the nonrandom unilateral bounds on the PE can be chosen asymptotically equivalent, which implies the convergence in probability to a nonrandom limit of the appropriately normalized PE. The present article extends this result to higher dimensions.
Keywords: Stokes flow, principal eigenvalue, random porous medium, chessboard structure, infinite volume asymptotics.
Received: 05.08.2004
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 6, Pages 1167–1178
DOI: https://doi.org/10.1007/s11202-006-0122-6
Bibliographic databases:
UDC: 519.21, (517.9, 518.61):532, 519.6
Language: Russian
Citation: V. V. Yurinskii, “On the smallest eigenvalue of the Stokes operator in a domain with fine-grained random boundary”, Sibirsk. Mat. Zh., 47:6 (2006), 1414–1428; Siberian Math. J., 47:6 (2006), 1167–1178
Citation in format AMSBIB
\Bibitem{Yur06}
\by V.~V.~Yurinskii
\paper On the smallest eigenvalue of the Stokes operator in a domain with fine-grained random boundary
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 6
\pages 1414--1428
\mathnet{http://mi.mathnet.ru/smj942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302853}
\zmath{https://zbmath.org/?q=an:1150.60033}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 6
\pages 1167--1178
\crossref{https://doi.org/10.1007/s11202-006-0122-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243454700015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845497896}
Linking options:
  • https://www.mathnet.ru/eng/smj942
  • https://www.mathnet.ru/eng/smj/v47/i6/p1414
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :97
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024