Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 6, Pages 1323–1341 (Mi smj937)  

This article is cited in 3 scientific papers (total in 3 papers)

Large deviations of the first passage time for a random walk with semiexponentially distributed jumps

A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (306 kB) Citations (3)
References:
Abstract: Suppose that $\xi,\xi(1),\xi(2),\dots$ are independent identically distributed random variables such that $-\xi$ is semiexponential; i.e., $\mathbf P(-\xi\geqslant t)=e^{-t^{\beta}L(t)}$, $\beta\in(0,1)$, $L(t)$ is a slowly varying function as $t\to\infty$ possessing some smoothness properties. Let $\mathbf E\xi=0$, $\mathbf D\xi=1$, and $S(k)=\xi(1)+\dots+\xi(k)$. Given $d>0$, define the first upcrossing time $\eta+(u)=\inf\{k\geqslant1:S(k)+kd>u\}$ at nonnegative level $u\geqslant0$ of the walk $S(k)+kd$ with positive drift $\d>0$. We prove that, under general conditions, the following relation is valid for $n\to\infty$ and for $u=u(n)\in[0,dn-N_n\sqrt{n}]$:
\begin{equation*} \mathbf P(\eta_+(u)>n)\thicksim\frac{\mathbf E_{\eta_+}(u)}{n}\mathbf P(S(n)\leqslant x), \tag{0.1} \end{equation*}
where $x=u-nd<0$ and an arbitrary fixed sequence $N_n$ not exceeding $d\sqrt{n}$ tends to $\infty$.
The conditions under which we prove (0.1) coincide exactly with the conditions under which the asymptotic behavior of the probability $\mathbf P(S(n)\leqslant x)$ for $x\leqslant-\sqrt{n}$ (for $x\in[-\sqrt{n},0]$ it follows from the central limit theorem).
Keywords: one-dimensional random walk, first passage time, large deviation, semiexponential distribution, integro-local theorem, integral theorem, deviation function, segment of the Cramér series.
Received: 27.02.2006
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 6, Pages 1084–1101
DOI: https://doi.org/10.1007/s11202-006-0117-3
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Sibirsk. Mat. Zh., 47:6 (2006), 1323–1341; Siberian Math. J., 47:6 (2006), 1084–1101
Citation in format AMSBIB
\Bibitem{Mog06}
\by A.~A.~Mogul'skii
\paper Large deviations of the first passage time for a random walk with semiexponentially distributed jumps
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 6
\pages 1323--1341
\mathnet{http://mi.mathnet.ru/smj937}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302848}
\zmath{https://zbmath.org/?q=an:1150.60006}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 6
\pages 1084--1101
\crossref{https://doi.org/10.1007/s11202-006-0117-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243454700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845500940}
Linking options:
  • https://www.mathnet.ru/eng/smj937
  • https://www.mathnet.ru/eng/smj/v47/i6/p1323
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:391
    Full-text PDF :104
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024