Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 5, Pages 1167–1192 (Mi smj923)  

Maximal tubes under the deformations of 3-dimensional hyperbolic cone-manifolds

S. Choia, J. Leeb

a Department of Mathematics, Korea Advanced Institute of Science and Technology
b Electronics and Telecommunications Research Institute
References:
Abstract: Hodgson and Kerckhoff found a small bound on Dehn surgered 3-manifolds from hyperbolic knots not admitting hyperbolic structures using deformations of hyperbolic cone-manifolds. They asked whether the area normalized meridian length squared of maximal tubular neighborhoods of the singular locus of the cone-manifold is decreasing and that summed with the cone-angle squared is increasing as we deform the cone-angles. We confirm this near 0 cone-angles for an infinite family of hyperbolic cone-manifolds obtained by Dehn surgeries along the Whitehead link complements. The basic method rests on explicit holonomy computations using the $A$-polynomials and finding the maximal tubes. One of the key tools is the Taylor expansion of a geometric component of the zero set of the $A$-polynomial in terms of the cone-angles. We also show that a sequence of Taylor expansions for Dehn surgered manifolds converges to 1 for the limit hyperbolic manifold.
Keywords: hyperbolic manifold, cone-manifold, deformations.
Received: 01.02.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 5, Pages 955–974
DOI: https://doi.org/10.1007/s11202-006-0107-5
Bibliographic databases:
UDC: 514
Language: Russian
Citation: S. Choi, J. Lee, “Maximal tubes under the deformations of 3-dimensional hyperbolic cone-manifolds”, Sibirsk. Mat. Zh., 47:5 (2006), 1167–1192; Siberian Math. J., 47:5 (2006), 955–974
Citation in format AMSBIB
\Bibitem{ChoLee06}
\by S.~Choi, J.~Lee
\paper Maximal tubes under the deformations of 3-dimensional hyperbolic cone-manifolds
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 5
\pages 1167--1192
\mathnet{http://mi.mathnet.ru/smj923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2266527}
\zmath{https://zbmath.org/?q=an:1150.57306}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 5
\pages 955--974
\crossref{https://doi.org/10.1007/s11202-006-0107-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241845200019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749173477}
Linking options:
  • https://www.mathnet.ru/eng/smj923
  • https://www.mathnet.ru/eng/smj/v47/i5/p1167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024