Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 5, Pages 1112–1116 (Mi smj917)  

This article is cited in 29 scientific papers (total in 29 papers)

About noncommuting graphs

A. R. Moghaddamfar

K. N. Toosi University of Technology
References:
Abstract: The noncommuting (G) of a nonabelian finite group G is defined as follows: The vertices of (G) are represented by the noncentral elements of G, and two distinct vertices x and y are joined by an edge if xyyx. In [1], the following was conjectured: Let G and H be two nonabelian finite groups such that (G)(H) then |G|=|H|. Here we give some counterexamples to this conjecture.
Keywords: noncommuting graph, truncated skew-polynomial ring, group, Jacobson radical, regular graph.
Received: 02.08.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 5, Pages 911–914
DOI: https://doi.org/10.1007/s11202-006-0101-y
Bibliographic databases:
UDC: 519.542
Language: Russian
Citation: A. R. Moghaddamfar, “About noncommuting graphs”, Sibirsk. Mat. Zh., 47:5 (2006), 1112–1116; Siberian Math. J., 47:5 (2006), 911–914
Citation in format AMSBIB
\Bibitem{Mog06}
\by A.~R.~Moghaddamfar
\paper About noncommuting graphs
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 5
\pages 1112--1116
\mathnet{http://mi.mathnet.ru/smj917}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2266521}
\zmath{https://zbmath.org/?q=an:1139.20019}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 5
\pages 911--914
\crossref{https://doi.org/10.1007/s11202-006-0101-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241845200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749170500}
Linking options:
  • https://www.mathnet.ru/eng/smj917
  • https://www.mathnet.ru/eng/smj/v47/i5/p1112
  • This publication is cited in the following 29 articles:
    1. M. Bahrami-Taghanaki, T. Foguel, A. R. Moghaddamfar, I. N. Nakaoka, J. Schmidt, “Nonstabilizing graphs arising from group actions”, Communications in Algebra, 2024, 1  crossref
    2. Walaa Nabil Taha Fasfous, Rajat Kanti Nath, “Inequalities involving energy and Laplacian energy of non-commuting graphs of finite groups”, Indian J Pure Appl Math, 2023  crossref
    3. Shi Wujie, “Quantitative characterization of finite simple groups”, Sci. Sin.-Math., 53:7 (2023), 931  crossref
    4. Valentina Grazian, Carmine Monetta, “A conjecture related to the nilpotency of groups with isomorphic non-commuting graphs”, Journal of Algebra, 633 (2023), 389  crossref
    5. Parthajit Bhowal, Deiborlang Nongsiang, Rajat Kanti Nath, “Non-Solvable Graphs of Groups”, Bull. Malays. Math. Sci. Soc., 45:3 (2022), 1255  crossref
    6. J. C. M. Pezzott, “Double-toroidal and 1-planar non-commuting graph of a group”, ADM, 34:1 (2022), 132  crossref
    7. Rezaie E., Ahmadidelir K., Tehranian A., Rasouli H., “Non-Commuting Graphs and Some Bounds For Commutativity Degree of Finite Moufang Loops”, Bull. Iran Math. Soc., 47:6 (2021), 1849–1869  crossref  mathscinet  isi  scopus
    8. Sharma M., Nath R.K., Shang Y., “On G-Noncommuting Graph of a Finite Group Relative to Its Subgroups”, Mathematics, 9:23 (2021), 3147  crossref  isi  scopus
    9. Muhie S.K., Otera D.E., Russo F.G., “Non-Permutability Graph of Subgroups”, Bull. Malays. Math. Sci. Soc., 44:6 (2021), 3875–3894  crossref  mathscinet  zmath  isi  scopus
    10. Mohammad A. Iranmanesh, Mohammad Hossein Zareian, “On n-centralizer CA-groups”, Communications in Algebra, 49:10 (2021), 4186  crossref
    11. Bashir H.H., Ahmadidelir K., “Some Structural Graph Properties of the Non-Commuting Graph of a Class of Finite Moufang Loops”, Electron. J. Graph Theory Appl., 8:2 (2020), 319–337  crossref  mathscinet  isi  scopus
    12. Torktaz M., Ashrafi A.R., “Spectral Properties of the Commuting Graphs of Certain Groups”, AKCE Int. J. Graphs Comb., 16:3 (2019), 300–309  crossref  mathscinet  zmath  isi  scopus
    13. Jahandideh M., Modabernia R., Shokrolahi S., “Non-Commuting Graphs of Certain Almost Simple Groups”, Asian-Eur. J. Math., 12:5 (2019), 1950081  crossref  mathscinet  zmath  isi  scopus
    14. Mirzargar M., “a Survey on the Automorphism Groups of the Commuting Graphs and Power Graphs”, Facta Univ-Ser. Math. Informat., 34:4 (2019), 729–743  crossref  mathscinet  isi
    15. Ahmadidelir K., “On the Non-Commuting Graph in Finite Moufang Loops”, J. Algebra. Appl., 17:4 (2018), 1850070  crossref  mathscinet  zmath  isi  scopus
    16. Costa D., Davis V., Gill K., Hinkle G., Reid L., “Eulerian Properties of Non-Commuting and Non-Cyclic Graphs of Finite Groups”, Commun. Algebr., 46:6 (2018), 2659–2665  crossref  mathscinet  zmath  isi  scopus
    17. Nardulli S., Russo F.G., “Two Bounds on the Noncommuting Graph”, Open Math., 13 (2015), 273–282  crossref  mathscinet  zmath  isi  scopus
    18. B. R. Bakhadly, A. E. Guterman, O. V. Markova, “Graphs defined by orthogonality”, J. Math. Sci. (N. Y.), 207:5 (2015), 698–717  mathnet  crossref
    19. Leshchenko Yu.Yu., “on the Diameters of Commuting Graphs of Permutational Wreath Products”, Ukr. Math. J., 66:5 (2014), 732–742  crossref  mathscinet  zmath  isi  elib  scopus
    20. Abdollahi A., Shahverdi H., “Non-Commuting Graphs of Nilpotent Groups”, Commun. Algebr., 42:9 (2014), 3944–3949  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :131
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025