|
Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 4, Pages 932–945
(Mi smj906)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
$(H,R)$-Lie coalgebras and $(H,R)$-Lie bialgebras
L.-yu. Zhang Agricultural University of Nanjing
Abstract:
Given an $(H,R)$-Lie coalgebra $\Gamma$, we construct $(H,R_T)$-Lie coalgebra $\Gamma^T$ through a right cocycle $T$, where $(H,R)$ is a triangular Hopf algebra, and prove that there exists a bijection between the set of $(H,R)$-Lie coalgebras and the set of ordinary Lie coalgebras. We also show that if $(L,[,],\Delta,R)$ is an $(H,R)$-Lie bialgebra of an ordinary Lie algebra then $(L^T,[,],\Delta_T,R_T)$ is an $(H,R_T)$-Lie bialgebra of an ordinary Lie algebra.
Keywords:
$(H,R)$-Lie coalgebra, triangular Hopf algebra, right cocycle, $(H,R)$-Lie bialgebra.
Received: 21.03.2005
Citation:
L.-yu. Zhang, “$(H,R)$-Lie coalgebras and $(H,R)$-Lie bialgebras”, Sibirsk. Mat. Zh., 47:4 (2006), 932–945; Siberian Math. J., 47:4 (2006), 767–778
Linking options:
https://www.mathnet.ru/eng/smj906 https://www.mathnet.ru/eng/smj/v47/i4/p932
|
|