Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 4, Pages 873–887 (Mi smj902)  

This article is cited in 27 scientific papers (total in 27 papers)

Asymptotics for the number of $n$-quasigroups of order 4

V. N. Potapov, D. S. Krotov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The asymptotic form of the number of $n$-quasigroups of order 4 is $3^{n+1}2^{2^n+1}(1+o(1))$.
Keywords: $n$-quasigroup, MDS codes, decomposability, reducibility.
Received: 14.05.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 4, Pages 720–731
DOI: https://doi.org/10.1007/s11202-006-0083-9
Bibliographic databases:
UDC: 519.143
Language: Russian
Citation: V. N. Potapov, D. S. Krotov, “Asymptotics for the number of $n$-quasigroups of order 4”, Sibirsk. Mat. Zh., 47:4 (2006), 873–887; Siberian Math. J., 47:4 (2006), 720–731
Citation in format AMSBIB
\Bibitem{PotKro06}
\by V.~N.~Potapov, D.~S.~Krotov
\paper Asymptotics for the number of $n$-quasigroups of order~4
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 4
\pages 873--887
\mathnet{http://mi.mathnet.ru/smj902}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265289}
\zmath{https://zbmath.org/?q=an:1150.05307}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 4
\pages 720--731
\crossref{https://doi.org/10.1007/s11202-006-0083-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240044100013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746400118}
Linking options:
  • https://www.mathnet.ru/eng/smj902
  • https://www.mathnet.ru/eng/smj/v47/i4/p873
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024