Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 1, Pages 93–102 (Mi smj9)  

This article is cited in 2 scientific papers (total in 2 papers)

Study of convergence of the projection-difference method for hyperbolic equations

S. E. Zhelezovsky

Saratov State Socio-Economic University
Full-text PDF (223 kB) Citations (2)
References:
Abstract: We consider the Cauchy problem for an abstract quasilinear hyperbolic equation with variable operator coefficients and a nonsmooth but Bochner integrable free term in a Hilbert space. Under study is the scheme for approximate solution of this problem which is a combination of the Galerkin scheme in space variables and the three-layer difference scheme with time weights. We establish an a priori energy error estimate without any special conditions on the projection subspaces. We give a concrete form of this estimate in the case when discretization in the space variables is carried out by the finite element method (for a partial differential equation) and by the Galerkin method in Mikhlin form.
Keywords: abstract hyperbolic equation, projection-difference method, Galerkin method, three-layer difference scheme, error estimate.
Received: 15.06.2005
Revised: 15.03.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 1, Pages 76–83
DOI: https://doi.org/10.1007/s11202-007-0009-1
Bibliographic databases:
UDC: 517.988.8
Language: Russian
Citation: S. E. Zhelezovsky, “Study of convergence of the projection-difference method for hyperbolic equations”, Sibirsk. Mat. Zh., 48:1 (2007), 93–102; Siberian Math. J., 48:1 (2007), 76–83
Citation in format AMSBIB
\Bibitem{Zhe07}
\by S.~E.~Zhelezovsky
\paper Study of convergence of the projection-difference method for hyperbolic equations
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 1
\pages 93--102
\mathnet{http://mi.mathnet.ru/smj9}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2304881}
\zmath{https://zbmath.org/?q=an:1164.65462}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 1
\pages 76--83
\crossref{https://doi.org/10.1007/s11202-007-0009-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244424100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846613163}
Linking options:
  • https://www.mathnet.ru/eng/smj9
  • https://www.mathnet.ru/eng/smj/v48/i1/p93
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :106
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024