Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 3, Pages 695–706 (Mi smj887)  

This article is cited in 12 scientific papers (total in 12 papers)

On $\Sigma$-subsets of naturals over abelian groups

A. N. Khisamiev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We obtain conditions for the $\Sigma$-definability of a subset of the set of naturals in the hereditarily finite admissible set over a model and for the computability of a family of such subsets. We prove that: for each $e$-ideal $I$ there exists a torsion-free abelian group $A$ such that the family of $e$-degrees of $\Sigma$-subsets of $\omega$ in $\mathbb{HF}(A)$ coincides with $I$ there exists a completely reducible torsion-free abelian group in the hereditarily finite admissible set over which there exists no universal $\Sigma$-function; for each principal $e$-ideal $I$ there exists a periodic abelian group $A$ such that the family of $e$-degrees of $\Sigma$-subsets of $\omega$ in $\mathbb{HF}(A)$ coincides with $I$.
Keywords: admissible set, e-reducibility, computability, $\Sigma$-definability, abelian group.
Received: 30.06.2004
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 3, Pages 574–583
DOI: https://doi.org/10.1007/s11202-006-0068-8
Bibliographic databases:
UDC: 512.540, 510.5
Language: Russian
Citation: A. N. Khisamiev, “On $\Sigma$-subsets of naturals over abelian groups”, Sibirsk. Mat. Zh., 47:3 (2006), 695–706; Siberian Math. J., 47:3 (2006), 574–583
Citation in format AMSBIB
\Bibitem{Khi06}
\by A.~N.~Khisamiev
\paper On $\Sigma$-subsets of naturals over abelian groups
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 3
\pages 695--706
\mathnet{http://mi.mathnet.ru/smj887}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251077}
\zmath{https://zbmath.org/?q=an:1115.03038}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 3
\pages 574--583
\crossref{https://doi.org/10.1007/s11202-006-0068-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239228700017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744721349}
Linking options:
  • https://www.mathnet.ru/eng/smj887
  • https://www.mathnet.ru/eng/smj/v47/i3/p695
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :117
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024