Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 3, Pages 557–574 (Mi smj877)  

An addition theorem for the manifolds with the Laplacian having discrete spectrum

V. I. Kuz'minov, I. A. Shvedov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The question of the preservation of discreteness of the spectrum of the Laplacian acting in a space of differential forms under the cutting and gluing of manifolds reduces to the same problem for compact solvability of the operator of exterior derivation. Along these lines, we give some conditions on a cut $Y$ dividing a Riemannian manifold $X$ into two parts $X_+$ and $X_-$ under which the spectrum of the Laplacian on $X$ is discrete if and only if so are the spectra of the Laplacians on $X_+$ and $X_-$.
Keywords: Laplacian, differential form, spectrum.
Received: 20.10.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 3, Pages 459–473
DOI: https://doi.org/10.1007/s11202-006-0058-x
Bibliographic databases:
UDC: 515.164.13
Language: Russian
Citation: V. I. Kuz'minov, I. A. Shvedov, “An addition theorem for the manifolds with the Laplacian having discrete spectrum”, Sibirsk. Mat. Zh., 47:3 (2006), 557–574; Siberian Math. J., 47:3 (2006), 459–473
Citation in format AMSBIB
\Bibitem{KuzShv06}
\by V.~I.~Kuz'minov, I.~A.~Shvedov
\paper An addition theorem for the manifolds with the Laplacian having discrete spectrum
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 3
\pages 557--574
\mathnet{http://mi.mathnet.ru/smj877}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251067}
\zmath{https://zbmath.org/?q=an:1115.58028}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 3
\pages 459--473
\crossref{https://doi.org/10.1007/s11202-006-0058-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239228700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744749837}
Linking options:
  • https://www.mathnet.ru/eng/smj877
  • https://www.mathnet.ru/eng/smj/v47/i3/p557
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :95
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024