Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 3, Pages 548–556 (Mi smj876)  

This article is cited in 1 scientific paper (total in 1 paper)

The push-out space of immersed spheres

Yu. Kaya

Zonguldak Karaelmas University
Full-text PDF (226 kB) Citations (1)
References:
Abstract: Let $f\colon M^m\to\mathbb R^{m+1}$ be an immersion of an orientable $m$-dimensional connected smooth manifold $M$ without boundary and assume that $\xi$ is a unit normal field for $f$. For a real number $t$ the map $f_{t\xi}\colon M^m\to\mathbb R^{m+1}$ is defined as $f_{t\xi}(p)=f(p)+t\xi(p)$. It is known that if $f_{t\xi}$ is an immersion, then for each $p\in M$ the number of the focal points on the line segment joining $f(p)$ to $f_{t\xi}(p)$ is a constant integer. This constant integer is called the index of the parallel immersion $f_{t\xi}$ and clearly the index lies between $0$ and $m$. In case $f\colon\mathbb S^m\to\mathbb R^{m+1}$ is an immersion, we study the presence of a component of index $\mu$ in the push-out space $\Omega(f)$. If there exists a component with index $\mu=m$ in $\Omega(f)$ then $f$ is known to be a strictly convex embedding of $\mathbb S^m$. We reveal the structure of $\Omega(f)$ when $f(\mathbb S^m)$ is convex and nonconvex. We also show that the presence of a component of index $\mu$ in $\Omega(f)$ enables us to construct a continuous field of tangent planes of dimension $\mu$ on $\mathbb S^m$ and so we see that for certain values of $\mu$ there does not exist a component of index $\mu$ in $\Omega(f)$.
Keywords: parallel immersion, index of a parallel immersion, push-out space.
Received: 15.09.2004
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 3, Pages 452–458
DOI: https://doi.org/10.1007/s11202-006-0057-y
Bibliographic databases:
UDC: 515.14
Language: Russian
Citation: Yu. Kaya, “The push-out space of immersed spheres”, Sibirsk. Mat. Zh., 47:3 (2006), 548–556; Siberian Math. J., 47:3 (2006), 452–458
Citation in format AMSBIB
\Bibitem{Kay06}
\by Yu.~Kaya
\paper The push-out space of immersed spheres
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 3
\pages 548--556
\mathnet{http://mi.mathnet.ru/smj876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251066}
\zmath{https://zbmath.org/?q=an:1115.53043}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 3
\pages 452--458
\crossref{https://doi.org/10.1007/s11202-006-0057-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239228700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744766114}
Linking options:
  • https://www.mathnet.ru/eng/smj876
  • https://www.mathnet.ru/eng/smj/v47/i3/p548
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :61
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024