Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 3, Pages 527–547 (Mi smj875)  

This article is cited in 22 scientific papers (total in 22 papers)

On the boundary value problem for the spectrally loaded heat conduction operator

M. T. Dzhenaliev, M. I. Ramazanov

Institute of Mathematics, Ministry of Education and Science of the Republic of Kazakhstan
References:
Abstract: We consider the boundary value problems in a quarter-plane for a loaded heat conduction operator (one-dimensional in the space variable). A peculiarity of the operator in question is as follows: first, the spectral parameter is the coefficient of the loaded summand; second, the order of the derivative in the loaded summand is equal to that of the differential part of the operator, and third, the load point moves with a variable velocity. We demonstrate that the boundary value problem under study is Noetherian.
Keywords: loaded heat conduction operator, boundary value problem, adjoint operator, spectrum, resolvent set, Noetherian operator, index of an operator.
Received: 22.02.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 3, Pages 433–451
DOI: https://doi.org/10.1007/s11202-006-0056-z
Bibliographic databases:
UDC: 517.956, 517.968.2, 517.984
Language: Russian
Citation: M. T. Dzhenaliev, M. I. Ramazanov, “On the boundary value problem for the spectrally loaded heat conduction operator”, Sibirsk. Mat. Zh., 47:3 (2006), 527–547; Siberian Math. J., 47:3 (2006), 433–451
Citation in format AMSBIB
\Bibitem{DzhRam06}
\by M.~T.~Dzhenaliev, M.~I.~Ramazanov
\paper On the boundary value problem for the spectrally loaded heat conduction operator
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 3
\pages 527--547
\mathnet{http://mi.mathnet.ru/smj875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251065}
\zmath{https://zbmath.org/?q=an:1115.35056}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 3
\pages 433--451
\crossref{https://doi.org/10.1007/s11202-006-0056-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239228700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744770579}
Linking options:
  • https://www.mathnet.ru/eng/smj875
  • https://www.mathnet.ru/eng/smj/v47/i3/p527
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:572
    Full-text PDF :182
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024