Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 2, Pages 455–462 (Mi smj868)  

This article is cited in 1 scientific paper (total in 1 paper)

Multidimensional exact solutions to a quasilinear parabolic equation with anisotropic heat conductivity

È. I. Semenov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (165 kB) Citations (1)
References:
Abstract: We prove invariance of a quasilinear parabolic equation with anisotropic heat conductivity in the three-dimensional coordinate space under some equivalence transformations and present some explicit formulas for these transformations. We consider nontrivial reductions of the equation to similar equations of less spatial dimension. Using these results, we construct new exact multidimensional solutions to the equation which depend on arbitrary harmonic functions.
Keywords: quasilinear parabolic heat equation, Liouville equation, multidimensional exact solution, equivalence transformation, anisotropy, conjugate harmonic function.
Received: 13.01.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 2, Pages 376–382
DOI: https://doi.org/10.1007/s11202-006-0049-y
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: È. I. Semenov, “Multidimensional exact solutions to a quasilinear parabolic equation with anisotropic heat conductivity”, Sibirsk. Mat. Zh., 47:2 (2006), 455–462; Siberian Math. J., 47:2 (2006), 376–382
Citation in format AMSBIB
\Bibitem{Sem06}
\by \`E.~I.~Semenov
\paper Multidimensional exact solutions to a quasilinear parabolic equation with anisotropic heat conductivity
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 2
\pages 455--462
\mathnet{http://mi.mathnet.ru/smj868}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2227989}
\zmath{https://zbmath.org/?q=an:1115.35064}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 2
\pages 376--382
\crossref{https://doi.org/10.1007/s11202-006-0049-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236747400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645353053}
Linking options:
  • https://www.mathnet.ru/eng/smj868
  • https://www.mathnet.ru/eng/smj/v47/i2/p455
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:469
    Full-text PDF :137
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024