Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 2, Pages 431–454 (Mi smj867)  

This article is cited in 18 scientific papers (total in 18 papers)

The genuinely nonlinear Graetz–Nusselt ultraparabolic equation

S. A. Sazhenkov

M. A. Lavrent'ev Institute of Hydrodynamics
References:
Abstract: We study a second-order quasilinear ultraparabolic equation whose matrix of the coefficients of the second derivatives is nonnegative, depends on the time and spatial variables, and can change rank in the case when it is diagonal and the coefficients of the first derivatives can be discontinuous. We prove that if the equation is a priori known to enjoy the maximum principle and satisfies the additional “genuine nonlinearity” condition then the Cauchy problem with arbitrary bounded initial data has at least one entropy solution and every uniformly bounded set of entropy solutions is relatively compact in $L_{\mathrm{loc}}^1$. The proofs are based on introduction and systematic study of the kinetic formulation of the equation in question and application of the modification of the Tartar $H$-measures proposed by E. Yu. Panov.
Keywords: genuine nonlinearity, ultraparabolic equation, entropy solution, anisotropic diffusion.
Received: 03.11.2004
Revised: 12.05.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 2, Pages 355–375
DOI: https://doi.org/10.1007/s11202-006-0048-z
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: S. A. Sazhenkov, “The genuinely nonlinear Graetz–Nusselt ultraparabolic equation”, Sibirsk. Mat. Zh., 47:2 (2006), 431–454; Siberian Math. J., 47:2 (2006), 355–375
Citation in format AMSBIB
\Bibitem{Saz06}
\by S.~A.~Sazhenkov
\paper The genuinely nonlinear Graetz--Nusselt ultraparabolic equation
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 2
\pages 431--454
\mathnet{http://mi.mathnet.ru/smj867}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2227988}
\zmath{https://zbmath.org/?q=an:1115.35077}
\elib{https://elibrary.ru/item.asp?id=12941015}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 2
\pages 355--375
\crossref{https://doi.org/10.1007/s11202-006-0048-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236747400014}
\elib{https://elibrary.ru/item.asp?id=13524847}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645285878}
Linking options:
  • https://www.mathnet.ru/eng/smj867
  • https://www.mathnet.ru/eng/smj/v47/i2/p431
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:540
    Full-text PDF :141
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024