Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 1, Pages 188–205 (Mi smj841)  

This article is cited in 5 scientific papers (total in 5 papers)

Existence theorems for the initial value problem for the Bogolyubov chain of equations in the space of sequences of bounded functions

M. A. Stashenko, G. N. Gubal'

Volyn State University of Lesya Ukrainka
Full-text PDF (277 kB) Citations (5)
References:
Abstract: We prove that the Cauchy problem for a nonsymmetric Bogolyubov chain of equations has a solution representable as an expansion in particle groups (clusters) whose evolution is governed by the cumulant (semi-invariant) of the evolution operator for this particle group in the space of sequences of summable and bounded functions.
Keywords: Bogolyubov equations, nonsymmetric system, cumulant (semi-invariant).
Received: 29.12.2004
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 1, Pages 152–168
DOI: https://doi.org/10.1007/s11202-006-0015-8
Bibliographic databases:
UDC: 517.9, 531.19
Language: Russian
Citation: M. A. Stashenko, G. N. Gubal', “Existence theorems for the initial value problem for the Bogolyubov chain of equations in the space of sequences of bounded functions”, Sibirsk. Mat. Zh., 47:1 (2006), 188–205; Siberian Math. J., 47:1 (2006), 152–168
Citation in format AMSBIB
\Bibitem{StaGub06}
\by M.~A.~Stashenko, G.~N.~Gubal'
\paper Existence theorems for the initial value problem for the Bogolyubov chain of equations in the space of sequences of bounded functions
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 1
\pages 188--205
\mathnet{http://mi.mathnet.ru/smj841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215304}
\zmath{https://zbmath.org/?q=an:1113.82063}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 1
\pages 152--168
\crossref{https://doi.org/10.1007/s11202-006-0015-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235434200015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844440448}
Linking options:
  • https://www.mathnet.ru/eng/smj841
  • https://www.mathnet.ru/eng/smj/v47/i1/p188
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :111
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024