Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2006, Volume 47, Number 1, Pages 169–187 (Mi smj840)  

This article is cited in 27 scientific papers (total in 27 papers)

Carleman estimates for second-order hyperbolic equations

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In the space of variables $(x,t)\in\mathbb{R}^{n+1}$, we consider a linear second-order hyperbolic equation with coefficients depending only on $x$. Given a domain $D\subset\mathbb{R}^{n+1}$ whose projection to the $x$-space is a compact domain $\Omega$, we consider the question of construction of a stability estimate for a solution to the Cauchy problem with data on the lateral boundary $S$ of $D$. The well-known method for obtaining such estimates bases on the Carleman estimates with an exponential-type weight function $\exp(2\tau\varphi(x,t))$ whose construction faces certain difficulties in case of hyperbolic equations with variable coefficients. We demonstrate that if $D$ is symmetric with respect to the plane $t=0$ then we can take $\varphi(x,t)$ to be the function $\varphi(x,t)=s^2(x,x^0)-pt^2$, where $s(x,x^0)$ is the distance between points $x$ and $x^0$ in the Riemannian metric induced by the differential equation, $p$ is some positive number less than 1, and the fixed point $x^0$ can either belong to the domain $\Omega$ or lie beyond it. As for the metric, we suppose that the sectional curvature of the corresponding Riemannian space is bounded above by some number $k_0\geqslant0$. In case of space of nonpositive curvature the parameter $p$ can be taken arbitrarily close to 1; in this case as $p\to1$ the stability estimates lead to a uniqueness theorem which describes exactly the domain of the solution continuation through $S$. It turns out that, in case of space of bounded positive curvature, construction of a Carleman estimate is possible only if the product of $k_0$ and $\sup\limits_{x\in\Omega}\,s^2(x,x^0)$ satisfies some smallness condition.
Keywords: Sobolev space, Sobolev-type class, Lipschitz manifold, functionals of calculus of variations,Riemannian spaces of class Lip, semicontinuity of functionals.
Received: 25.07.2005
English version:
Siberian Mathematical Journal, 2006, Volume 47, Issue 1, Pages 135–151
DOI: https://doi.org/10.1007/s11202-006-0014-9
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “Carleman estimates for second-order hyperbolic equations”, Sibirsk. Mat. Zh., 47:1 (2006), 169–187; Siberian Math. J., 47:1 (2006), 135–151
Citation in format AMSBIB
\Bibitem{Rom06}
\by V.~G.~Romanov
\paper Carleman estimates for second-order hyperbolic equations
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 1
\pages 169--187
\mathnet{http://mi.mathnet.ru/smj840}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215303}
\zmath{https://zbmath.org/?q=an:1113.35112}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 1
\pages 135--151
\crossref{https://doi.org/10.1007/s11202-006-0014-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235434200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844453421}
Linking options:
  • https://www.mathnet.ru/eng/smj840
  • https://www.mathnet.ru/eng/smj/v47/i1/p169
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024