Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 6, Pages 198–209 (Mi smj824)  

Orderability of topological spaces with a connected linear base

G. I. Chertanov
Abstract: Let $\gamma$ be a system of subsets in a set $X$. A string of elements of $\gamma$ is denned to be any finite subsystem $\delta=\{U_1,U_2,\dots,U_n\}$ such that $U_i\cap U_{i+1}\ne\emptyset$ for all $i=1,2,\dots,n-1$. If $a$ and $b$, $a\ne b$, are points in $X$, then the $\gamma$-ray from $a$ to $b$ is defined as the set $\gamma L(a,b)=\{x\in X:{}$there is a string $\delta\subset\gamma$ and $\{a,x\}\subset\cup\delta\not\ni b\}$. A base $\gamma$ of a topological space $X$ is called connected if $b\in[\gamma L(a,b)]$ for all $a\ne b$ из $X$ in $X$.
In the article we prove that every base of a connected $T_1$-space is connected.
We call a system $\mathcal{B}$ linear if it satisfies the following conditions:
$\mathcal{PB}$. If three sets in the system $\mathcal{B}$ are such that every two of them meet one another then there is a pair of them with the intersection lying in the third set.
$\mathcal{UB}$. If two sets in the system $\mathcal{B}$ meet one another then their union belongs to $\mathcal{B}$ too.
The Main Theorem. For a $T_1$-space $X$ to be homeomorphic to a dense subspace of a connected totally ordered space, it is necessary and sufficient that $X$ have a connected linear base.
Received: 22.01.1990
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 6, Pages 1180–1189
DOI: https://doi.org/10.1007/BF00973483
Bibliographic databases:
UDC: 513.83
Language: Russian
Citation: G. I. Chertanov, “Orderability of topological spaces with a connected linear base”, Sibirsk. Mat. Zh., 34:6 (1993), 198–209; Siberian Math. J., 34:6 (1993), 1180–1189
Citation in format AMSBIB
\Bibitem{Che93}
\by G.~I.~Chertanov
\paper Orderability of topological spaces with a connected linear base
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 6
\pages 198--209
\mathnet{http://mi.mathnet.ru/smj824}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1268172}
\zmath{https://zbmath.org/?q=an:0833.54019}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 6
\pages 1180--1189
\crossref{https://doi.org/10.1007/BF00973483}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MQ34600021}
Linking options:
  • https://www.mathnet.ru/eng/smj824
  • https://www.mathnet.ru/eng/smj/v34/i6/p198
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024