Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 6, Pages 170–178 (Mi smj821)  

This article is cited in 2 scientific papers (total in 2 papers)

Closed geodesics on non-simply-connected manifolds

I. A. Taimanov
Abstract: The article contains the next
Theorem. If a Riemannian manifold $m^N$ is closed and there is a normal Abelian subgroup $G\subset\pi_1(M^n)$ of nonzero finite rank such that the factor-group $\pi_1(M^n)/G$ is aperiodic, i.e., it contains elements of infinite order then $N(t)\geqslant C_t/\ln t$, where $N(t)$ the number of geometrically distinct geodesies of length at most t and $C$ is a positive constant.
The theorem implies an analogous estimate for the growth of $N(t)$for closed manifolds with almost solvable fundamental groups.
Received: 21.01.1993
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 6, Pages 1154–1160
DOI: https://doi.org/10.1007/BF00973480
Bibliographic databases:
UDC: 513.835
Language: Russian
Citation: I. A. Taimanov, “Closed geodesics on non-simply-connected manifolds”, Sibirsk. Mat. Zh., 34:6 (1993), 170–178; Siberian Math. J., 34:6 (1993), 1154–1160
Citation in format AMSBIB
\Bibitem{Tai93}
\by I.~A.~Taimanov
\paper Closed geodesics on non-simply-connected manifolds
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 6
\pages 170--178
\mathnet{http://mi.mathnet.ru/smj821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1268169}
\zmath{https://zbmath.org/?q=an:0822.53030}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 6
\pages 1154--1160
\crossref{https://doi.org/10.1007/BF00973480}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MQ34600018}
Linking options:
  • https://www.mathnet.ru/eng/smj821
  • https://www.mathnet.ru/eng/smj/v34/i6/p170
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024