|
Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 6, Pages 158–164
(Mi smj819)
|
|
|
|
Haar system rearrangements in Lorentz spaces
E. M. Semenov
Abstract:
Let $\chi_n(t)$ $(n\ge 1)$ be Haar functions and let $\pi$ be a permutation of the set of natural numbers such that $\chi_{\pi(n)}(t)$ and $\chi_n(t)$ have supports of the same measure. We study the operators $T_\pi$ that are defined by the equalities $T_\pi\chi_n=\chi_{\pi(n)}$ $(n\ge 1)$. A criterion is found for boundedness of $T_\pi$ in the Lorentz spaces $L_{2,q}$. In particular, boundedness of $T_\pi$ in $L_{2,q}$ $(q\neq 2)$ implies that $T_\pi$ is an isomorphism of $L_p$ onto itself for all $p\in(1,\infty)$.
Received: 19.11.1992
Citation:
E. M. Semenov, “Haar system rearrangements in Lorentz spaces”, Sibirsk. Mat. Zh., 34:6 (1993), 158–164; Siberian Math. J., 34:6 (1993), 1142–1148
Linking options:
https://www.mathnet.ru/eng/smj819 https://www.mathnet.ru/eng/smj/v34/i6/p158
|
|