Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 6, Pages 158–164 (Mi smj819)  

Haar system rearrangements in Lorentz spaces

E. M. Semenov
Full-text PDF (599 kB) Citations (1)
Abstract: Let $\chi_n(t)$ $(n\ge 1)$ be Haar functions and let $\pi$ be a permutation of the set of natural numbers such that $\chi_{\pi(n)}(t)$ and $\chi_n(t)$ have supports of the same measure. We study the operators $T_\pi$ that are defined by the equalities $T_\pi\chi_n=\chi_{\pi(n)}$ $(n\ge 1)$. A criterion is found for boundedness of $T_\pi$ in the Lorentz spaces $L_{2,q}$. In particular, boundedness of $T_\pi$ in $L_{2,q}$ $(q\neq 2)$ implies that $T_\pi$ is an isomorphism of $L_p$ onto itself for all $p\in(1,\infty)$.
Received: 19.11.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 6, Pages 1142–1148
DOI: https://doi.org/10.1007/BF00973478
Bibliographic databases:
UDC: 517.512
Language: Russian
Citation: E. M. Semenov, “Haar system rearrangements in Lorentz spaces”, Sibirsk. Mat. Zh., 34:6 (1993), 158–164; Siberian Math. J., 34:6 (1993), 1142–1148
Citation in format AMSBIB
\Bibitem{Sem93}
\by E.~M.~Semenov
\paper Haar system rearrangements in Lorentz spaces
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 6
\pages 158--164
\mathnet{http://mi.mathnet.ru/smj819}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1268167}
\zmath{https://zbmath.org/?q=an:0811.42008}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 6
\pages 1142--1148
\crossref{https://doi.org/10.1007/BF00973478}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MQ34600016}
Linking options:
  • https://www.mathnet.ru/eng/smj819
  • https://www.mathnet.ru/eng/smj/v34/i6/p158
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024