|
Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 6, Pages 150–152
(Mi smj817)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On the integral mean value theorem
Yu. G. Nikonorov
Abstract:
For an arbitrary function $f$ continuous on the interval $[0,1]$, the author considers a function $\xi\colon[0,1]\to R$ defined as follows. For every $x\in[0,1]$ $\xi(x)$ is the maximum of the numbers $t\in[0,x]$ satisfying the equation $f(t)x=\int_0^x f(\tau)\,d\tau$. The main result of the article consists in proving the inequality $\varlimsup\limits_{x\to0}\xi(x)/x\ge1/e$.
Received: 08.02.1993
Citation:
Yu. G. Nikonorov, “On the integral mean value theorem”, Sibirsk. Mat. Zh., 34:6 (1993), 150–152; Siberian Math. J., 34:6 (1993), 1135–1137
Linking options:
https://www.mathnet.ru/eng/smj817 https://www.mathnet.ru/eng/smj/v34/i6/p150
|
Statistics & downloads: |
Abstract page: | 763 | Full-text PDF : | 187 |
|