Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 5, Pages 785–794
DOI: https://doi.org/10.33048/smzh.2024.65.502
(Mi smj7891)
 

The ptolemaic characteristic of tetrads and quasiregular mappings

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We consider the Ptolemaic characteristic of quadruples of disjoint nonempty compact subsets (generalized tetrads). The main theorem of this article asserts that an arbitrary multivalued mapping $F$ from ${\Bbb R}^n$ onto itself such that the images of distinct points are disjoint and each of them contains at most two distinct points is the inverse of a $K$-quasimeromorphic mapping if and only if $F$ admits a controllable upper bound for the distortion of the Ptolemaic characteristic of tetrads.
Keywords: mapping with bounded distortion, quasiregular mapping, quasimeromorphic mapping, quasimöbius mapping, multivalued mapping, Ptolemaic characteristic of tetrads.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0005
Received: 06.02.2024
Revised: 06.02.2024
Accepted: 20.08.2024
Document Type: Article
UDC: 517.54
MSC: 35R30
Language: Russian
Citation: V. V. Aseev, “The ptolemaic characteristic of tetrads and quasiregular mappings”, Sibirsk. Mat. Zh., 65:5 (2024), 785–794
Citation in format AMSBIB
\Bibitem{Ase24}
\by V.~V.~Aseev
\paper The ptolemaic characteristic of~tetrads and quasiregular mappings
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 5
\pages 785--794
\mathnet{http://mi.mathnet.ru/smj7891}
\crossref{https://doi.org/10.33048/smzh.2024.65.502}
Linking options:
  • https://www.mathnet.ru/eng/smj7891
  • https://www.mathnet.ru/eng/smj/v65/i5/p785
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:33
    Full-text PDF :1
    References:11
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024