Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 5, Pages 775–784
DOI: https://doi.org/10.33048/smzh.2024.65.501
(Mi smj7890)
 

On the $\pi$-potency of descending HNN-extensions of groups

D. N. Azarov

Ivanovo State University
References:
Abstract: Let $G$ be a group, let $\varphi$ be an isomorphism of $G$ onto a subgroup $K$ of $G$, and let $G^*$ be a descending HNN-extension of $G$ corresponding to $\varphi $. The potency of $G$ is not inherited by $G^*$ even in the simplest case, when $G$ is an infinite cyclic group. We prove that if $G$ is a finitely generated torsion-free nilpotent group (a polycyclic group); then the index $m = [G : K]$ of $K$ in $G$ is finite and $G^*$ is $\pi $-potent (virtually $\pi $-potent), where $\pi $ is the set of all primes greater than $m$. We also prove some generalizations of this assertion. Some of the results of this work on the potency of descending HNN-extensions are analogs of the well-known theorems on the residual finiteness of the HNN-extensions.
Keywords: potent group, residually finite group, descending HNN-extension, polycyclic group, nilpotent group, soluble group.
Funding agency Grant number
Ivanovo State University
Received: 15.03.2024
Revised: 15.03.2024
Accepted: 20.08.2024
Document Type: Article
UDC: 512.543
MSC: 35R30
Language: Russian
Citation: D. N. Azarov, “On the $\pi$-potency of descending HNN-extensions of groups”, Sibirsk. Mat. Zh., 65:5 (2024), 775–784
Citation in format AMSBIB
\Bibitem{Aza24}
\by D.~N.~Azarov
\paper On the $\pi$-potency of descending HNN-extensions of~groups
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 5
\pages 775--784
\mathnet{http://mi.mathnet.ru/smj7890}
\crossref{https://doi.org/10.33048/smzh.2024.65.501}
Linking options:
  • https://www.mathnet.ru/eng/smj7890
  • https://www.mathnet.ru/eng/smj/v65/i5/p775
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:32
    Full-text PDF :1
    References:8
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024