|
This article is cited in 1 scientific paper (total in 1 paper)
Generalization of artin's theorem on the isotopy of closed braids. I
A. V. Malyutinab a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
A classical theorem of braid theory, dating back to Artin's work, says that two closed braids in a solid torus are ambient isotopic if and only if they represent the same conjugacy class of the braid group. This theorem can be reformulated in the framework of link theory without referring to the group structure. A link in a surface bundle over the circle is transversal whenever it covers the circle. In this terminology, Artin's theorem states that in a solid torus trivially fibered over the circle transversal links are ambient isotopic if and only if they are isotopic in the class of transversal links. We generalize this result by proving that (in the piecewise linear category) transversal links in an arbitrary compact orientable 3-manifold fibered over the circle with a compact fiber are ambient isotopic if and only if they are isotopic in the class of transversal links.
Keywords:
knot, link, braid, surface, 3-manifold, incompressible surface, hyperbolic, bundle, fibered space, locally trivial bundle, fiber-preserving self-homeomorphism, mapping class group, isotopy, homotopy, homotopy equivalence.
Received: 03.08.2023 Revised: 27.11.2023 Accepted: 28.11.2023
Citation:
A. V. Malyutin, “Generalization of artin's theorem on the isotopy of closed braids. I”, Sibirsk. Mat. Zh., 65:3 (2024), 524–532
Linking options:
https://www.mathnet.ru/eng/smj7870 https://www.mathnet.ru/eng/smj/v65/i3/p524
|
Statistics & downloads: |
Abstract page: | 52 | Full-text PDF : | 1 | References: | 16 | First page: | 8 |
|