Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 3, Pages 517–523
DOI: https://doi.org/10.33048/smzh.2024.65.306
(Mi smj7869)
 

On the quantization dimension of maximal linked systems

A. A. Ivanovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We prove that for a compact metric space $X$ and for a nonnegative real $b$ not exceeding the lower box dimension of $X$, there exists a maximal linked system in $\lambda X$ with lower quantization dimension $b$ and support $X$. There also exists a maximal linked system in $\lambda X$ with support $X$ whose lower and upper quantization dimensions coincide respectively with the lower and upper box dimensions of $X$.
Keywords: box dimension, quantization dimension, superextension.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Received: 02.12.2023
Revised: 02.12.2023
Accepted: 25.01.2024
Document Type: Article
UDC: 515.12
MSC: 35R30
Language: Russian
Citation: A. A. Ivanov, “On the quantization dimension of maximal linked systems”, Sibirsk. Mat. Zh., 65:3 (2024), 517–523
Citation in format AMSBIB
\Bibitem{Iva24}
\by A.~A.~Ivanov
\paper On~the quantization dimension of maximal linked systems
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 3
\pages 517--523
\mathnet{http://mi.mathnet.ru/smj7869}
\crossref{https://doi.org/10.33048/smzh.2024.65.306}
Linking options:
  • https://www.mathnet.ru/eng/smj7869
  • https://www.mathnet.ru/eng/smj/v65/i3/p517
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :1
    References:14
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024