Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 3, Pages 469–488
DOI: https://doi.org/10.33048/smzh.2024.65.304
(Mi smj7867)
 

Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links

A. Yu. Vesninab, A. A. Egorovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: Call a polyhedron in a three-dimensional hyperbolic space generalized if finite, ideal, and truncated vertices are admitted. By Belletti's theorem of 2021 the exact upper bound for the volumes of generalized hyperbolic polyhedra with the same one-dimensional skeleton $\Gamma$ equals the volume of an ideal right-angled hyperbolic polyhedron whose one-dimensional skeleton is the medial graph for $\Gamma$. We give the upper bounds for the volume of an arbitrary generalized hyperbolic polyhedron such that the bounds depend linearly on the number of edges. Moreover, we show that the bounds can be improved if the polyhedron has triangular faces and trivalent vertices. As application we obtain some new upper bounds for the volume of the complement of the hyperbolic link with more than eight twists in a diagram.
Keywords: Lobachevsky geometry hyperbolic space, volumes of hyperbolic polyhedra, hyperbolic knots and links, augmented links.
Received: 18.07.2023
Revised: 26.02.2024
Accepted: 08.04.2024
Document Type: Article
UDC: 514.132+515.162
MSC: 35R30
Language: Russian
Citation: A. Yu. Vesnin, A. A. Egorov, “Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links”, Sibirsk. Mat. Zh., 65:3 (2024), 469–488
Citation in format AMSBIB
\Bibitem{VesEgo24}
\by A.~Yu.~Vesnin, A.~A.~Egorov
\paper Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 3
\pages 469--488
\mathnet{http://mi.mathnet.ru/smj7867}
\crossref{https://doi.org/10.33048/smzh.2024.65.304}
Linking options:
  • https://www.mathnet.ru/eng/smj7867
  • https://www.mathnet.ru/eng/smj/v65/i3/p469
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :1
    References:19
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024