Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 3, Pages 455–468
DOI: https://doi.org/10.33048/smzh.2024.65.303
(Mi smj7866)
 

The trace and integrable commutators of the measurable operators affiliated to a semifinite von Neumann algebra

A. M. Bikchentaev

Institute of Physics, Kazan (Volga region) Federal University
References:
Abstract: Assume that $\tau$ is a faithful normal semifinite trace on a von Neumann algebra ${\mathcal{M}}$, $I$ is the unit of $\mathcal{M}$, $S({\mathcal{M}},\tau )$ is the $*$-algebra of $\tau$-measurable operators, and $L_1({\mathcal{M}},\tau)$ is the Banach space of \hbox{$\tau$-integrable} operators. We present a new proof of the following generalization of Putnam's theorem (1951): No positive self-commutator $[A^*, A]$ with $A\in S({\mathcal{M}}, \tau )$ is invertible in ${\mathcal{M}}$. If $\tau$ is infinite then no positive self-commutator $[A^*, A]$ with $A\in S({\mathcal{M}}, \tau )$ can be of the form $\lambda I +K$, where $\lambda$ is a nonzero complex number and $K$ is a $\tau$-compact operator. Given $A, B \in S({\mathcal{M}}, \tau )$ with $[A, B]\in L_1({\mathcal{M}},\tau)$ we seek for the conditions that $\tau ([A, B])=0$. If $X\in S({\mathcal{M}}, \tau )$ and $Y=Y^3 \in {\mathcal{M}}$ with $[X, Y]\in L_1({\mathcal{M}},\tau)$ then $\tau ([X, Y])=0$. If $A^2=A\in S({\mathcal{M}},\tau)$ and $[A^*, A]\in L_1({\mathcal{M}},\tau)$ then $\tau ([A^*, A])=0$. If a partial isometry $U$ lies in ${\mathcal{M}}$ and $U^n=0$ for some integer $n\geq 2$ then $U^{n-1}$ is a commutator and $U^{n-1}\in L_1({\mathcal{M}},\tau)$ implies that $\tau (U^{n-1})=0$.
Keywords: Hilbert space, von Neumann algebra, normal trace, measurable operator, commutator, self-commutator, idempotent.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-994
Received: 21.11.2023
Revised: 21.11.2023
Accepted: 25.01.2024
Document Type: Article
UDC: 517.983:517.986
MSC: 35R30
Language: Russian
Citation: A. M. Bikchentaev, “The trace and integrable commutators of the measurable operators affiliated to a semifinite von Neumann algebra”, Sibirsk. Mat. Zh., 65:3 (2024), 455–468
Citation in format AMSBIB
\Bibitem{Bik24}
\by A.~M.~Bikchentaev
\paper The trace and integrable commutators of the measurable operators affiliated to a~semifinite von~Neumann algebra
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 3
\pages 455--468
\mathnet{http://mi.mathnet.ru/smj7866}
\crossref{https://doi.org/10.33048/smzh.2024.65.303}
Linking options:
  • https://www.mathnet.ru/eng/smj7866
  • https://www.mathnet.ru/eng/smj/v65/i3/p455
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :1
    References:20
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024