Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 2, Pages 288–294
DOI: https://doi.org/10.33048/smzh.2024.65.205
(Mi smj7855)
 

Teichmüller's modulsatz and the variation of the Dirichlet integral

V. N. Dubininab

a Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok
b Novosibirsk State University
References:
Abstract: We show that changing the level curve of a harmonic function with the classical Hadamard variation with a small parameter entails a change in the Dirichlet integral of the function which is quadratic in the parameter. As a corollary, we supplement the well-known theorem of Teichmüller about the sum of moduli of doubly connected domains into which an annulus is subdivided by a continuum that differs little from a concentric circle.
Keywords: harmonic function, Dirichlet integral, modulus of a doubly connected domain, condenser capacity.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-282
Received: 24.09.2023
Revised: 24.09.2023
Accepted: 28.11.2023
Document Type: Article
UDC: 517.956.224
MSC: 35R30
Language: Russian
Citation: V. N. Dubinin, “Teichmüller's modulsatz and the variation of the Dirichlet integral”, Sibirsk. Mat. Zh., 65:2 (2024), 288–294
Citation in format AMSBIB
\Bibitem{Dub24}
\by V.~N.~Dubinin
\paper Teichm\"uller's modulsatz and the variation of the Dirichlet integral
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 2
\pages 288--294
\mathnet{http://mi.mathnet.ru/smj7855}
\crossref{https://doi.org/10.33048/smzh.2024.65.205}
Linking options:
  • https://www.mathnet.ru/eng/smj7855
  • https://www.mathnet.ru/eng/smj/v65/i2/p288
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :3
    References:26
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024