Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 1, Pages 140–163
DOI: https://doi.org/10.33048/smzh.2024.65.112
(Mi smj7846)
 

The Riesz–Zygmund sums of Fourier–Chebyshev rational integral operators and their approximation properties

P. G. Potseiko, E. A. Rovba

Yanka Kupala State University of Grodno
References:
Abstract: Studying the approximation properties of a certain Riesz–Zygmund sum of Fourier–Chebyshev rational integral operators with constraints on the number of geometrically distinct poles, we obtain an integral expression of the operators. We find upper bounds for pointwise and uniform approximations to the function $|x|^s$ with $s \in (0, 2)$ on the segment $[-1,1]$, an asymptotic expression for the majorant of uniform approximations, and the optimal values of the parameter of the approximant providing the greatest decrease rate of the majorant. We separately study the approximation properties of the Riesz–Zygmund sums for Fourier–Chebyshev polynomial series, establish an asymptotic expression for the Lebesgue constants, and estimate approximations to $f \in H^{(\gamma)}[-1,1]$ and $\gamma \in (0, 1]$ as well as pointwise and uniform approximations to the function $|x|^s$ with $s \in (0, 2)$.
Keywords: Fourier–Chebyshev rational integral operators, Riesz–Zygmund sums, Lebesgue constants, functions of the Lipschitz class, asymptotic estimates, best constants.
Received: 05.07.2023
Revised: 16.11.2023
Accepted: 28.11.2023
Document Type: Article
UDC: 517.5
MSC: 35R30
Language: Russian
Citation: P. G. Potseiko, E. A. Rovba, “The Riesz–Zygmund sums of Fourier–Chebyshev rational integral operators and their approximation properties”, Sibirsk. Mat. Zh., 65:1 (2024), 140–163
Citation in format AMSBIB
\Bibitem{PotRov24}
\by P.~G.~Potseiko, E.~A.~Rovba
\paper The Riesz--Zygmund sums of Fourier--Chebyshev rational integral operators and their approximation properties
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 1
\pages 140--163
\mathnet{http://mi.mathnet.ru/smj7846}
\crossref{https://doi.org/10.33048/smzh.2024.65.112}
Linking options:
  • https://www.mathnet.ru/eng/smj7846
  • https://www.mathnet.ru/eng/smj/v65/i1/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:58
    References:24
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024