Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 1, Pages 87–91
DOI: https://doi.org/10.33048/smzh.2024.65.108
(Mi smj7842)
 

Hilbert–Pólya operators in Krein spaces

V. V. Kapustin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We construct some class of selfadjoint operators in the Krein spaces consisting of functions on the straight line $\{\operatorname{Re}s=\frac12\}$. Each of these operators is a rank-one perturbation of a selfadjoint operator in the corresponding Hilbert space and has eigenvalues complex numbers of the form $\frac1{s(1-s)}$, where $s$ ranges over the set of nontrivial zeros of the Riemann zeta-function.
Keywords: Riemann zeta-function, eigenvalue, perturbation, selfadjoint operator.
Received: 29.11.2022
Revised: 29.11.2022
Accepted: 28.11.2023
Document Type: Article
UDC: 517.984
MSC: 35R30
Language: Russian
Citation: V. V. Kapustin, “Hilbert–Pólya operators in Krein spaces”, Sibirsk. Mat. Zh., 65:1 (2024), 87–91
Citation in format AMSBIB
\Bibitem{Kap24}
\by V.~V.~Kapustin
\paper Hilbert--P\'olya operators in Krein spaces
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 1
\pages 87--91
\mathnet{http://mi.mathnet.ru/smj7842}
\crossref{https://doi.org/10.33048/smzh.2024.65.108}
Linking options:
  • https://www.mathnet.ru/eng/smj7842
  • https://www.mathnet.ru/eng/smj/v65/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:39
    References:20
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024