Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 6, Pages 1151–1159
DOI: https://doi.org/10.33048/smzh.2023.64.604
(Mi smj7821)
 

This article is cited in 3 scientific papers (total in 3 papers)

Openness and discreteness of mappings of finite distortion on Carnot groups

S. G. Basalaev, S. K. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (287 kB) Citations (3)
References:
Abstract: We prove that a mapping of finite distortion $ f : \Omega \to\Bbb G$ in a domain $\Omega$ of an $H$-type Carnot group $\Bbb G$ is continuous, open, and discrete provided that the distortion function $K(x)$ of $f$ belongs to $L_{p,\operatorname{loc}}(\Omega)$ for some $p > \nu -1$. In fact, the proof is suitable for each Carnot group provided it has a $\nu$-harmonic function of the form $\log \rho$, where the homogeneous norm $\rho$ is $C^2$-smooth.
Keywords: mappings of finite distortion, discreteness, openness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
Received: 03.08.2023
Revised: 03.08.2023
Accepted: 25.09.2023
Document Type: Article
UDC: 517.518+517.548
MSC: 35R30
Language: Russian
Citation: S. G. Basalaev, S. K. Vodopyanov, “Openness and discreteness of mappings of finite distortion on Carnot groups”, Sibirsk. Mat. Zh., 64:6 (2023), 1151–1159
Citation in format AMSBIB
\Bibitem{BasVod23}
\by S.~G.~Basalaev, S.~K.~Vodopyanov
\paper Openness and discreteness of mappings of finite distortion on Carnot groups
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 6
\pages 1151--1159
\mathnet{http://mi.mathnet.ru/smj7821}
\crossref{https://doi.org/10.33048/smzh.2023.64.604}
Linking options:
  • https://www.mathnet.ru/eng/smj7821
  • https://www.mathnet.ru/eng/smj/v64/i6/p1151
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :9
    References:16
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024