Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 6, Pages 1131–1137
DOI: https://doi.org/10.33048/smzh.2023.64.602
(Mi smj7819)
 

On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean $d$-space

V. Alexandrovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Physics Department
References:
Abstract: We study the existence of the two affine-equivalent bar-and-joint frameworks in Euclidean $d$-space which have some prescribed combinatorial structure and edge lengths. We show that the existence problem is always solvable theoretically and explain why to propose a practical algorithm for solving the problem is impossible.
Keywords: Euclidean $d$-space, graph, bar-and-joint framework, affine-equivalent frameworks, Cayley–Menger determinant, Cauchy rigidity theorem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0006
Received: 27.06.2023
Revised: 18.09.2023
Accepted: 25.09.2023
Document Type: Article
UDC: 514.1
Language: Russian
Citation: V. Alexandrov, “On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean $d$-space”, Sibirsk. Mat. Zh., 64:6 (2023), 1131–1137
Citation in format AMSBIB
\Bibitem{Ale23}
\by V.~Alexandrov
\paper On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean $d$-space
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 6
\pages 1131--1137
\mathnet{http://mi.mathnet.ru/smj7819}
\crossref{https://doi.org/10.33048/smzh.2023.64.602}
Linking options:
  • https://www.mathnet.ru/eng/smj7819
  • https://www.mathnet.ru/eng/smj/v64/i6/p1131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:45
    Full-text PDF :18
    References:10
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024