Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 6, Pages 1119–1130
DOI: https://doi.org/10.33048/smzh.2023.64.601
(Mi smj7818)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the virtual potency of automorphism groups and split extensions

D. N. Azarov

Ivanovo State University
Full-text PDF (270 kB) Citations (2)
References:
Abstract: We obtain some sufficient conditions for potency and virtual potency for automorphism groups and the split extensions of some groups. In particular, considering a finitely generated group $G$ residually $p$-finite for every prime $p$, we prove that each split extension of $G$ by a torsion-free potent group is a potent group, and if the abelianization rank of $G$ is at most $2$ then the automorphism group of $G$ is virtually potent. As a corollary, we derive the necessary and sufficient conditions of virtual potency for certain generalized free products and HNN-extensions.
Keywords: potent group, residually finite group, automorphism group, split extension, HNN-extension, generalized free product.
Funding agency Grant number
Russian Science Foundation 23-21-10061
Received: 30.03.2023
Revised: 30.03.2023
Accepted: 25.09.2023
Document Type: Article
UDC: 512.543
MSC: 35R30
Language: Russian
Citation: D. N. Azarov, “On the virtual potency of automorphism groups and split extensions”, Sibirsk. Mat. Zh., 64:6 (2023), 1119–1130
Citation in format AMSBIB
\Bibitem{Aza23}
\by D.~N.~Azarov
\paper On the virtual potency of~automorphism groups and split extensions
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 6
\pages 1119--1130
\mathnet{http://mi.mathnet.ru/smj7818}
\crossref{https://doi.org/10.33048/smzh.2023.64.601}
Linking options:
  • https://www.mathnet.ru/eng/smj7818
  • https://www.mathnet.ru/eng/smj/v64/i6/p1119
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :8
    References:20
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024