Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 5, Pages 1065–1082
DOI: https://doi.org/10.33048/smzh.2023.64.513
(Mi smj7815)
 

Infinitesimal sliding bendings of compact surfaces and Euler's conjecture

I. Kh. Sabitov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow
References:
Abstract: We give some historical information about Euler's conjecture on the rigidity of compact surfaces as well as the available results related to its proof. We thoroughly describe an approach to the conjecture by infinitesimal bendings in the case when the deformation of the surface is considered in the class of sliding bendings. We prove that Euler's conjecture is true for the surfaces of revolution of genus 0 in the class of sliding bendings.
Keywords: Euler's conjecture, sliding bending, infinitesimal bending, analytic bending.
Received: 10.05.2023
Revised: 01.06.2023
Accepted: 02.08.2023
Document Type: Article
UDC: 514.772.35
MSC: 35R30
Language: Russian
Citation: I. Kh. Sabitov, “Infinitesimal sliding bendings of compact surfaces and Euler's conjecture”, Sibirsk. Mat. Zh., 64:5 (2023), 1065–1082
Citation in format AMSBIB
\Bibitem{Sab23}
\by I.~Kh.~Sabitov
\paper Infinitesimal sliding bendings of compact surfaces and Euler's conjecture
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 5
\pages 1065--1082
\mathnet{http://mi.mathnet.ru/smj7815}
\crossref{https://doi.org/10.33048/smzh.2023.64.513}
Linking options:
  • https://www.mathnet.ru/eng/smj7815
  • https://www.mathnet.ru/eng/smj/v64/i5/p1065
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :9
    References:14
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024