Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 5, Pages 1023–1031
DOI: https://doi.org/10.33048/smzh.2023.64.511
(Mi smj7813)
 

On extension of multilinear operators and homogeneous polynomials in vector lattices

Z. A. Kusraeva

North Caucasus Center for Mathematical Research VSC RAS
References:
Abstract: We establish the existence of a simultaneous extension from a majorizing sublattice in the classes of regular multilinear operators and regular homogeneous polynomials on vector lattices. By simultaneous extension from a sublattice we mean a right inverse of the restriction operator to this sublattice which is an order continuous lattice homomorphism. The main theorems generalize some earlier results for orthogonally additive polynomials and bilinear operators. The proofs base on linearization by Fremlin's tensor product and the existence of a right inverse of an order continuous operator with Levy and Maharam property.
Keywords: vector lattice, majorizing sublattice, homogeneous polynomial, multilinear polynomial, orthogonal additivity, orthosymmetry, simultaneous extension, restriction operator, Fremlin's tensor product.
Funding agency Grant number
Russian Science Foundation 22-71-00097
Received: 14.04.2023
Revised: 14.06.2023
Accepted: 02.08.2023
Document Type: Article
UDC: 517.98
MSC: 35R30
Language: Russian
Citation: Z. A. Kusraeva, “On extension of multilinear operators and homogeneous polynomials in vector lattices”, Sibirsk. Mat. Zh., 64:5 (2023), 1023–1031
Citation in format AMSBIB
\Bibitem{Kus23}
\by Z.~A.~Kusraeva
\paper On extension of multilinear operators and homogeneous polynomials in vector lattices
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 5
\pages 1023--1031
\mathnet{http://mi.mathnet.ru/smj7813}
\crossref{https://doi.org/10.33048/smzh.2023.64.511}
Linking options:
  • https://www.mathnet.ru/eng/smj7813
  • https://www.mathnet.ru/eng/smj/v64/i5/p1023
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024