Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 5, Pages 945–970
DOI: https://doi.org/10.33048/smzh.2023.64.505
(Mi smj7807)
 

This article is cited in 1 scientific paper (total in 1 paper)

Locally convex spaces with all Archimedean cones closed

A. E. Gutmanab, I. A. Emelyanenkova

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (485 kB) Citations (1)
References:
Abstract: We provide an exhaustive description of the class of locally convex spaces in which all Archimedean cones are closed. We introduce the notion of quasidense set and prove that the above class consists of all finite-dimensional and countable-dimensional spaces $X$ whose topological dual $X'$ is quasidense in the algebraic dual $X^\#$ of $X$.
Keywords: Archimedean ordered vector space, locally convex space, weak topology, cone, wedge.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0004
Received: 03.05.2023
Revised: 03.05.2023
Accepted: 16.05.2023
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. E. Gutman, I. A. Emelyanenkov, “Locally convex spaces with all Archimedean cones closed”, Sibirsk. Mat. Zh., 64:5 (2023), 945–970
Citation in format AMSBIB
\Bibitem{GutEme23}
\by A.~E.~Gutman, I.~A.~Emelyanenkov
\paper Locally convex spaces with~all~Archimedean cones closed
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 5
\pages 945--970
\mathnet{http://mi.mathnet.ru/smj7807}
\crossref{https://doi.org/10.33048/smzh.2023.64.505}
Linking options:
  • https://www.mathnet.ru/eng/smj7807
  • https://www.mathnet.ru/eng/smj/v64/i5/p945
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :6
    References:8
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024