Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 4, Pages 742–752
DOI: https://doi.org/10.33048/smzh.2023.64.407
(Mi smj7794)
 

Regularity of the growth of Dirichlet series with respect to a strongly incomplete exponential system

A. M. Gaisina, R. A. Gaisina, T. I. Belousb

a Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
b Ufa University of Science and Technology
References:
Abstract: The article deals with the behavior of the sum of the Dirichlet series $F(s)=\sum\nolimits_{n} a_ne^{\lambda_ns}$, with $0<\lambda_{n}\uparrow\infty$, converging absolutely in the left half-plane $\Pi_0=\{ s=\sigma+it: \sigma<0\}$ along a curve arbitrarily approaching the imaginary axis, the boundary of this half-plane. We assume that the maximal term of the series satisfies some lower estimate on some sequence of points $ \sigma_n \uparrow 0-$. The essence of the questions we consider is as follows: Given a curve $\gamma$ starting from the half-plane $\Pi_0$ and ending asymptotically approaching on the boundary of $\Pi_0$, what are the conditions for the existence of a sequence $ \{ \xi_n\} \subset\gamma$, with $\operatorname{Re} \xi_n \to 0-$, such that $ \ln M_F(\operatorname{Re} \xi_n) \sim \ln\vert F(\xi_n)\vert $, where $M_F(\sigma)=\sup\nolimits_{\vert t\vert <\infty}\vert F(\sigma+it) \vert $? A.M. Gaisin obtained the answer to this question in 2003. In the present article, we solve the following problem: Under what additional conditions on $\gamma$ is the finer asymptotic relation valid in the case that the argument $s$ tends to the imaginary axis along $\gamma$ over a sufficiently massive set?
Keywords: Dirichlet series, lacunar power series, maximal term, curve of bounded slope, convergence half-plane.
Received: 03.03.2023
Revised: 20.04.2023
Accepted: 16.05.2023
Document Type: Article
UDC: 517.53
MSC: 35R30
Language: Russian
Citation: A. M. Gaisin, R. A. Gaisin, T. I. Belous, “Regularity of the growth of Dirichlet series with respect to a strongly incomplete exponential system”, Sibirsk. Mat. Zh., 64:4 (2023), 742–752
Citation in format AMSBIB
\Bibitem{GaiGaiBel23}
\by A.~M.~Gaisin, R.~A.~Gaisin, T.~I.~Belous
\paper Regularity of the growth of~Dirichlet series with~respect to a~strongly incomplete exponential system
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 4
\pages 742--752
\mathnet{http://mi.mathnet.ru/smj7794}
\crossref{https://doi.org/10.33048/smzh.2023.64.407}
Linking options:
  • https://www.mathnet.ru/eng/smj7794
  • https://www.mathnet.ru/eng/smj/v64/i4/p742
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :9
    References:10
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024