Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 4, Pages 733–741
DOI: https://doi.org/10.33048/smzh.2023.64.406
(Mi smj7793)
 

Groups with nilpotent $n$-generated normal subgroups

A. I. Budkin

Altai State University, Barnaul
References:
Abstract: Let $L_n({\mathcal N})$ be the class of all groups $G$ in which the normal closure of each $n$-generated subgroup of $G$ belongs to ${\mathcal N}$. It is known that if ${\mathcal N}$ is a quasivariety of groups then so is $L_n({\mathcal N})$. We find the conditions on ${\mathcal N}$ for the sequence $L_1({\mathcal N}),L_2({\mathcal N}),\dots $ to contain infinitely many different quasivarieties. In particular, such are the quasivarieties ${\mathcal N}$ generated by a finitely generated nilpotent nonabelian group.
Keywords: nilpotent group, quasivariety, axiomatic rank, Levi class.
Received: 23.03.2023
Revised: 16.04.2023
Accepted: 16.05.2023
Document Type: Article
UDC: 512.544
MSC: 35R30
Language: Russian
Citation: A. I. Budkin, “Groups with nilpotent $n$-generated normal subgroups”, Sibirsk. Mat. Zh., 64:4 (2023), 733–741
Citation in format AMSBIB
\Bibitem{Bud23}
\by A.~I.~Budkin
\paper Groups with~nilpotent $n$-generated normal subgroups
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 4
\pages 733--741
\mathnet{http://mi.mathnet.ru/smj7793}
\crossref{https://doi.org/10.33048/smzh.2023.64.406}
Linking options:
  • https://www.mathnet.ru/eng/smj7793
  • https://www.mathnet.ru/eng/smj/v64/i4/p733
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:27
    Full-text PDF :13
    References:19
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024