Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 4, Pages 720–732
DOI: https://doi.org/10.33048/smzh.2023.64.405
(Mi smj7792)
 

Decompositions in semirings

Ts. Ch.-D. Batueva, M. V. Schwidefsky

Novosibirsk State University
References:
Abstract: We prove that each element of a complete atomic $l$-semiring has a canonical decomposition. We also find some sufficient conditions for the decomposition to be unique that are expressed by first-order sentences. As a corollary, we obtain a theorem of Avgustinovich–Frid which claims that each factorial language has the unique canonical decomposition.
Keywords: semiring, ordered semigroup, factorial language, canonical decomposition.
Funding agency Grant number
Russian Science Foundation 22-21-00104
Received: 25.01.2023
Revised: 01.05.2023
Accepted: 16.05.2023
Document Type: Article
UDC: 512.558
MSC: 35R30
Language: Russian
Citation: Ts. Ch.-D. Batueva, M. V. Schwidefsky, “Decompositions in semirings”, Sibirsk. Mat. Zh., 64:4 (2023), 720–732
Citation in format AMSBIB
\Bibitem{BatSch23}
\by Ts.~Ch.-D.~Batueva, M.~V.~Schwidefsky
\paper Decompositions in semirings
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 4
\pages 720--732
\mathnet{http://mi.mathnet.ru/smj7792}
\crossref{https://doi.org/10.33048/smzh.2023.64.405}
Linking options:
  • https://www.mathnet.ru/eng/smj7792
  • https://www.mathnet.ru/eng/smj/v64/i4/p720
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :16
    References:14
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024